Receptor (biochemistry)

Receptor (biochemistry)

In biochemistry, a receptor is a molecule found on the surface of a cell, which receives specific chemical signals from neighbouring cells or the wider environment within an organism. These signals tell a cell to do something—for example to divide or die, or to allow certain molecules to enter or exit the cell.

Receptors are protein molecules, embedded in either the plasma membrane (cell surface receptors) or the cytoplasm (nuclear receptors) of a cell, to which one or more specific kinds of signaling molecules may attach. A molecule which binds (attaches) to a receptor is called a ligand, and may be a peptide (short protein) or other small molecule, such as a neurotransmitter, a hormone, a pharmaceutical drug, or a toxin. Each kind of receptor can bind only certain ligand shapes. Each cell typically has many receptors, of many different kinds. Simply put, a receptor functions as a keyhole that opens a biochemical pathway when the proper ligand is inserted.

Ligand binding stabilizes a certain receptor conformation (the three-dimensional shape of the receptor protein, with no change in sequence). This is often associated with gain of or loss of protein activity, ordinarily leading to some sort of cellular response. However, some ligands (e.g. antagonists) merely block receptors without inducing any response. Ligand-induced changes in receptors result in cellular changes which constitute the biological activity of the ligands. Many functions of the human body are regulated by these receptors responding uniquely to specific molecules like this.



The shapes and actions of receptors are studied by X-ray crystallography, dual polarisation interferometry, computer modelling, and structure-function studies, which have advanced the understanding of drug action at the binding sites of receptors. Structure activity relationships correlate induced conformational changes with biomolecular activity, and are studied using dynamic techniques such as circular dichroism and dual polarisation interferometry.

Transmembrane receptor:E=extracellular space; I=intracellular space; P=plasma membrane

Depending on their functions and ligands, several types of receptors may be identified:

Membrane receptors are isolated from cell membranes by complex extraction procedures using solvents, detergents, and/or affinity purification.

Binding and activation

Ligand binding is an equilibrium process. Ligands bind to receptors and dissociate from them according to the law of mass action.

\left[\mathrm{Ligand}\right] \cdot \left[\mathrm{Receptor}\right]\;\;\overset{K_d}{\rightleftharpoons}\;\;\left[\text{Ligand-receptor complex}\right]
(the brackets stand for concentrations)

One measure of how well a molecule fits a receptor is the binding affinity, which is inversely related to the dissociation constant Kd. A good fit corresponds with high affinity and low Kd. The final biological response (e.g. second messenger cascade, muscle contraction), is only achieved after a significant number of receptors are activated.

The receptor-ligand affinity is greater than enzyme-substrate affinity.[citation needed] Whilst both interactions are specific and reversible, there is no chemical modification of the ligand as seen with the substrate upon binding to its enzyme.

If the receptor exists in two states (see this picture), then the ligand binding must account for these two receptor states. For a more detailed discussion of two-state binding, which is thought to occur as an activation mechanism in many receptors see this link.

Constitutive activity

A receptor which is capable of producing its biological response in the absence of a bound ligand is said to display "constitutive activity".[1] The constitutive activity of receptors may be blocked by inverse agonist binding. Mutations in receptors that result in increased constitutive activity underlie some inherited diseases, such as precocious puberty (due to mutations in luteinizing hormone receptors) and hyperthyroidism (due to mutations in thyroid-stimulating hormone receptors). For the use of statistical mechanics in a quantitative study of the ligand-receptor binding affinity, see the comprehensive article[2] on the configuration integral.

Theories of drug receptor interaction

Occupation theory

Drug effect is directly proportional to number of receptors occupied. Drug effect ceases as drug-receptor complex dissociate

Ariens & Stephenson theory

introduced Terms of "affinity" & "efficacy" Affinity: ability of the drug to combine with receptor to create drug-receptor complex Efficacy: ability of the drug-receptor complex to initiate a response

Affinity “drug-receptor interaction” is governed by the law of mass action.

In this theory

Agonist: drug with high affinity & high intrinsic activity Partial agonist: drug with high affinity & low intrinsic activity Antagonist: drug with high affinity & low intrinsic activity

Rate theory

The activation of receptors is directly proportional to the total number of encounters of the drug with its receptors per unit time Pharmacological activity is directly proportional to the rate of dissociation & association not number of receptors occupied

Agonist:drug with fast association & fast dissociation Partial agonist:drug with intermediate association & intermediate dissociation Antagonist:drug with fast association & slow dissociation

Induced fit theory

As the drug approaches the receptor the receptor alters the conformation of its binding site to produce drug—receptor complex

Agonists versus antagonists

Not every ligand that binds to a receptor also activates the receptor. The following classes of ligands exist:

  • (Full) agonists are able to activate the receptor and result in a maximal biological response. Most natural ligands are full agonists.
  • Partial agonists do not activate receptors thoroughly, causing responses which are partial compared to those of full agonists.
  • Antagonists bind to receptors but do not activate them. This results in receptor blockage, inhibiting the binding of other agonists.
  • Inverse agonists reduce the activity of receptors by inhibiting their constitutive activity.

Peripheral membrane protein receptors

These receptors are relatively rare compared to the much more common types of receptors that cross the cell membrane. An example of a receptor that is a peripheral membrane protein is the elastin receptor.

Transmembrane receptors

Metabotropic receptors

G protein-coupled receptors

These receptors are also known as seven transmembrane receptors or 7TM receptors, because they pass through the membrane seven times.

Receptor tyrosine kinases

These receptors detect ligands and propagate signals via the tyrosine kinase of their intracellular domains. This family of receptors includes;

Guanylyl cyclase receptors

  • GC-A & GC-B: receptors for Atrial-natriuretic peptide (ANP) and other natriuretic peptides
  • GC-C: Guanylin receptor

Ionotropic receptors

Ionotropic receptors are heteromeric or homomeric oligomers.[3] They are receptors that respond to extracellular ligands and receptors that respond to intracellular ligands.

Extracellular ligands

Receptor Ligand Ion current
Nicotinic acetylcholine receptor Acetylcholine, Nicotine Na+, K+, Ca2+ [3]
Glycine receptor (GlyR) Glycine, Strychnine Cl > HCO3 [3]
GABA receptors: GABA-A, GABA-C GABA Cl > HCO3 [3]
Glutamate receptors: NMDA receptor, AMPA receptor, and Kainate receptor Glutamate Na+, K+, Ca2+ [3]
5-HT3 receptor Serotonin Na+, K+ [3]
P2X receptors ATP Ca2+, Na+, Mg2+ [3]

Intracellular ligands

Receptor Ligand Ion current
cyclic nucleotide-gated ion channels cGMP (vision), cAMP and cGTP (olfaction) Na+, K+ [3]
IP3 receptor IP3 Ca2+ [3]
Intracellular ATP receptors ATP (closes channel)[3] K+ [3]
Ryanodine receptor Ca2+ Ca2+ [3]

The entire repertoire of human plasma membrane receptors is listed at the Human Plasma Membrane Receptome (

Intracellular receptors

Transcription factors


Role in genetic disorders

Many genetic disorders involve hereditary defects in receptor genes. Often, it is hard to determine whether the receptor is nonfunctional or the hormone is produced at decreased level; this gives rise to the "pseudo-hypo-" group of endocrine disorders, where there appears to be a decreased hormonal level while in fact it is the receptor that is not responding sufficiently to the hormone.

Receptor regulation

Cells can increase (upregulate) or decrease (downregulate) the number of receptors to a given hormone or neurotransmitter to alter its sensitivity to this molecule. This is a locally acting feedback mechanism.

Receptor desensitization[5][broken citation]

In immune system

The main receptors in the immune system are pattern recognition receptors (PRRs), toll-like receptors (TLRs), killer activated and killer inhibitor receptors (KARs and KIRs), complement receptors, Fc receptors, B cell receptors and T cell receptors.[7]

See also


  1. ^ Milligan G (December 2003). "Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective". Mol. Pharmacol. 64 (6): 1271–6. doi:10.1124/mol.64.6.1271. PMID 14645655. 
  2. ^ Vu-Quoc, L., Configuration integral (statistical mechanics), 2008.
  3. ^ a b c d e f g h i j k l Medical Physiology, Boron & Boulpaep, ISBN 1-4160-2328-3, Elsevier Saunders 2005. Updated edition. Page 90.
  4. ^ Gobeil F, et al. (2006) G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Can J Physiol Pharmacol. 2006 Mar–Apr;84(3–4):287–97. PMID 16902576
  5. ^ Ligand-bound desensitation Vol. 135. No. 5 2130–2136
  6. ^ G. Boulay, L. Chrbtien, D.E. Richard, AND G. Guillemettes. (1994) Short-Term Desensitization of the Angiotensin II Receptor of Bovine Adrenal Glomerulosa Cells Corresponds to a Shift from a High to a Low Affinity State. Endocrinology Vol. 135. No. 5 2130–2136
  7. ^ Lippincott's Illustrated Reviews: Immunology. Paperback: 384 pages. Publisher: Lippincott Williams & Wilkins; (July 1, 2007). Language: English. ISBN 0-7817-9543-5. ISBN 978-0-7817-9543-2. Page 20

External links

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Receptor — may refer to:*Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a… …   Wikipedia

  • Receptor antagonist — This article is about the biochemistry term. For other uses, see Antagonist (disambiguation). Antagonists will block the binding of an agonist at a receptor molecule, inhibiting the signal produced by a receptor agonist coupling. A receptor… …   Wikipedia

  • Receptor tyrosine kinase — Receptor tyrosine kinases (RTK)s are the high affinity cell surface receptors for many polypeptide growth factors, cytokines and hormones. Of the ninety unique tyrosine kinase genes idenitified in the human genome, 58 encode receptor tyrosine… …   Wikipedia

  • Receptor-ligand kinetics — In biochemistry, receptor ligand kinetics is a branch of chemical kinetics in which the kinetic species are defined by different non covalent bindings and/or conformations of the molecules involved, which are denoted as receptor(s) and ligand(s) …   Wikipedia

  • Biochemistry of Alzheimer's disease — The biochemistry of Alzheimer s disease (AD), one of the most common causes of adult dementia, is as yet not well understood at the molecular level. It has been identified as a protein misfolding disease due to the accumulation of abnormally… …   Wikipedia

  • List of biochemistry topics — This page aims to list articles on Wikipedia that are related to biochemistry. This is so that those interested in the subject can monitor changes to the pages by clicking on .This list is not necessarily complete or up to date if you see an… …   Wikipedia

  • Epidermal growth factor receptor — This article is about a cell surface receptor. For estimated measure of kidney function (eGFR), see Glomerular filtration rate. Epidermal growth factor receptor …   Wikipedia

  • Melanocortin 4 receptor — Rendering based on PDB 2IQP …   Wikipedia

  • Cholecystokinin A receptor — PDB rendering based on 1d6g …   Wikipedia

  • FSH-receptor — Follicle stimulating hormone receptor PDB rendering based on 1xwd …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”