- Mothers against decapentaplegic homolog 3
-
Mothers against decapentaplegic homolog 3 also known as SMAD family member 3 or SMAD3 is a protein that in humans is encoded by the SMAD3 gene.[1][2] SMAD3 is a member of the SMAD family of proteins.
The human SMAD3 gene is located on chromosome 15. It is one of several human homologues of a gene that was originally discovered in the fruit fly Drosophila melanogaster.
Contents
SMAD3 gene
The human SMAD3 gene is composed of 9 exons over 129,339 base pairs.
In mice, mutation of SMAD3 has been linked to colorectal adenocarcinoma,[3] increased systemic inflammation, and accelerated wound healing.[4] There is no conclusive evidence of similar activity in humans, however. A 2002 study investigated possible links between SMAD3 mutation and cancer of the pancreas and parathyroid gland, but found no connection. Increased SMAD3 activity has, however, been implicated in the pathogenesis of scleroderma. Smad3 is also a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes. Smad3-knockout mice have diminished adiposity[5], with improved glucose tolerance and insulin sensitivity. Despite their reduced physical activity arising from muscle atrophy[6], these Smad3-knockout mice are resistant to high-fat-diet induced obesity.
The herpes simplex virus can downregulate SMAD3 using the Lat transcription factor, even while the virus is in a latent state.
A reference assembly of SMAD3 is available.
SMAD3 protein
SMAD3, or Mothers against decapentaplegic homolog 3, is a polypeptide that, as its name describes, is a homolog of the Drosophila protein "Mothers against decapentaplegic". It belongs to the SMAD family of proteins, which belong to the TGFβ superfamily of modulators. Like many other TGFβ family members, SMAD3 is involved in cell signalling. SMAD3 modulates signals of activin and TGFβ's. Binding of this protein with SMAD4 enables its transmigration into the nucleus where it forms complexes with other proteins and acts as a transcription factor. SMAD3 is a receptor-regulated SMAD (R-SMAD).
Nomenclature
The SMAD proteins are homologs of both the Drosophila protein "mothers against decapentaplegic" (MAD) and the C. elegans protein SMA. The name is a combination of the two. During Drosophila research, it was found that a mutation in the gene MAD in the mother repressed the gene decapentaplegic in the embryo. The phrase "Mothers against" was inspired by organizations formed by mothers to oppose social problems, such as Mothers Against Drunk Driving (MADD).
References
- ^ "Entrez Gene: SMAD3 SMAD family member 3". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4088.
- ^ Zhang Y, Feng X, We R, Derynck R (September 1996). "Receptor-associated Mad homologues synergize as effectors of the TGF-beta response". Nature 383 (6596): 168–72. doi:10.1038/383168a0. PMID 8774881.
- ^ Zhu Y, Richardson JA, Parada LF, Graff JM (September 1998). "Smad3 mutant mice develop metastatic colorectal cancer". Cell 94 (6): 703–14. doi:10.1016/S0092-8674(00)81730-4. PMID 9753318.
- ^ Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (September 1999). "Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response". Nat. Cell Biol. 1 (5): 260–6. doi:10.1038/12971. PMID 10559937.
- ^ Tan et al. (February 2011). "Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet". Diabetes 60 (2): 464–476. doi:10.2337/db10-0801. PMID 21270259. http://diabetes.diabetesjournals.org/content/60/2/464.long.
- ^ Ge et al. (April 2011). "Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts". Cell Res.. doi:10.1038/cr.2011.72. PMID 21502976. http://www.nature.com/cr/journal/vaop/ncurrent/full/cr201172a.html.
Further reading
- Li H, Liu JP (2008). "Mechanisms of action of TGF-beta in cancer: evidence for Smad3 as a repressor of the hTERT gene.". Ann. N. Y. Acad. Sci. 1114: 56–68. doi:10.1196/annals.1396.016. PMID 17934056.
- Matsuzaki K (2006). "Smad3 phosphoisoform-mediated signaling during sporadic human colorectal carcinogenesis.". Histol. Histopathol. 21 (6): 645–62. PMID 16528675.
- Miyazono K (2000). "TGF-beta signaling by Smad proteins.". Cytokine Growth Factor Rev. 11 (1-2): 15–22. doi:10.1016/S1359-6101(99)00025-8. PMID 10708949.
- Wrana JL, Attisano L (2000). "The Smad pathway.". Cytokine Growth Factor Rev. 11 (1-2): 5–13. doi:10.1016/S1359-6101(99)00024-6. PMID 10708948.
- Verschueren K, Huylebroeck D (2000). "Remarkable versatility of Smad proteins in the nucleus of transforming growth factor-beta activated cells.". Cytokine Growth Factor Rev. 10 (3-4): 187–99. doi:10.1016/S1359-6101(99)00012-X. PMID 10647776.
- Massagué J (1998). "TGF-beta signal transduction.". Annu. Rev. Biochem. 67: 753–91. doi:10.1146/annurev.biochem.67.1.753. PMID 9759503.
- Walker LC, Waddell N, Ten Haaf A, et al. (2008). "Use of expression data and the CGEMS genome-wide breast cancer association study to identify genes that may modify risk in BRCA1/2 mutation carriers.". Breast Cancer Research and Treatment 112 (2): 229–36. doi:10.1007/s10549-007-9848-5. PMID 18095154.
- Lee KB, Jeon JH, Choi I, et al. (2008). "Clusterin, a novel modulator of TGF-beta signaling, is involved in Smad2/3 stability.". Biochem. Biophys. Res. Commun. 366 (4): 905–9. doi:10.1016/j.bbrc.2007.12.033. PMID 18082619.
- Kim TD, Shin S, Janknecht R (2008). "Repression of Smad3 activity by histone demethylase SMCX/JARID1C.". Biochem. Biophys. Res. Commun. 366 (2): 563–7. doi:10.1016/j.bbrc.2007.12.013. PMID 18078810.
- Zhao X, Nicholls JM, Chen YG (2008). "Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling.". J. Biol. Chem. 283 (6): 3272–80. doi:10.1074/jbc.M708033200. PMID 18055455.
- Li T, Chiang JY (2007). "A novel role of transforming growth factor beta1 in transcriptional repression of human cholesterol 7alpha-hydroxylase gene.". Gastroenterology 133 (5): 1660–9. doi:10.1053/j.gastro.2007.08.042. PMID 17920062.
- Lu S, Lee J, Revelo M, et al. (2007). "Smad3 is overexpressed in advanced human prostate cancer and necessary for progressive growth of prostate cancer cells in nude mice.". Clin. Cancer Res. 13 (19): 5692–702. doi:10.1158/1078-0432.CCR-07-1078. PMID 17908958.
- Kalo E, Buganim Y, Shapira KE, et al. (2007). "Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II.". Mol. Cell. Biol. 27 (23): 8228–42. doi:10.1128/MCB.00374-07. PMC 2169171. PMID 17875924. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2169171.
- Weng HL, Ciuclan L, Liu Y, et al. (2007). "Profibrogenic transforming growth factor-beta/activin receptor-like kinase 5 signaling via connective tissue growth factor expression in hepatocytes.". Hepatology 46 (4): 1257–70. doi:10.1002/hep.21806. PMID 17657819.
- Dennler S, André J, Alexaki I, et al. (2007). "Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo.". Cancer Res. 67 (14): 6981–6. doi:10.1158/0008-5472.CAN-07-0491. PMID 17638910.
- Zhang M, Lee CH, Luo DD, et al. (2007). "Polarity of response to transforming growth factor-beta1 in proximal tubular epithelial cells is regulated by beta-catenin.". J. Biol. Chem. 282 (39): 28639–47. doi:10.1074/jbc.M700594200. PMID 17623674.
- Martin MM, Buckenberger JA, Jiang J, et al. (2007). "TGF-beta1 stimulates human AT1 receptor expression in lung fibroblasts by cross talk between the Smad, p38 MAPK, JNK, and PI3K signaling pathways.". Am. J. Physiol. Lung Cell Mol. Physiol. 293 (3): L790–9. doi:10.1152/ajplung.00099.2007. PMC 2413071. PMID 17601799. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2413071.
- Dai F, Chang C, Lin X, et al. (2007). "Erbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain.". Mol. Cell. Biol. 27 (17): 6183–94. doi:10.1128/MCB.00132-07. PMC 1952163. PMID 17591701. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1952163.
- Levy L, Howell M, Das D, et al. (2007). "Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation.". Mol. Cell. Biol. 27 (17): 6068–83. doi:10.1128/MCB.00664-07. PMC 1952153. PMID 17591695. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1952153.
Cell signaling: TGF beta signaling pathway TGF beta superfamily of ligands TGF beta family (TGF-β1, TGF-β2, TGF-β3)
Bone morphogenetic proteins (BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8a, BMP8b, BMP10 , BMP15)
Growth differentiation factors (GDF1, GDF2, GDF3, GDF5, GDF6, GDF7, Myostatin/GDF8, GDF9, GDF10, GDF11, GDF15)
Other (Activin and inhibin, Anti-müllerian hormone, Nodal)TGF beta receptors
(Activin, BMP)TGFBR1: Activin type 1 receptors (ACVR1, ACVR1B, ACVR1C) · ACVRL1 · BMPR1 (BMPR1A · BMPR1B)
TGFBR2: Activin type 2 receptors (ACVR2A, ACVR2B) · AMHR2 · BMPR2
TGFBR3: betaglycanTransducers/SMAD Ligand inhibitors Coreceptors Other SARAB trdu: iter (nrpl/grfl/cytl/horl), csrc (lgic, enzr, gprc, igsr, intg, nrpr/grfr/cytr), itra (adap, gbpr, mapk), calc, lipd; path (hedp, wntp, tgfp+mapp, notp, jakp, fsap, hipp, tlrp) Transcription factors and intracellular receptors (1) Basic domains (1.1) Basic leucine zipper (bZIP)Activating transcription factor (AATF, 1, 2, 3, 4, 5, 6, 7) · AP-1 (c-Fos, FOSB, FOSL1, FOSL2, JDP2, c-Jun, JUNB, JUND) · BACH (1, 2) · BATF · BLZF1 · C/EBP (α, β, γ, δ, ε, ζ) · CREB (1, 3, L1) · CREM · DBP · DDIT3 · GABPA · HLF · MAF (B, F, G, K) · NFE (2, L1, L2, L3) · NFIL3 · NRL · NRF (1, 2, 3) · XBP1(1.2) Basic helix-loop-helix (bHLH)ATOH1 · AhR · AHRR · ARNT · ASCL1 · BHLHB2 · BMAL (ARNTL, ARNTL2) · CLOCK · EPAS1 · FIGLA · HAND (1, 2) · HES (5, 6) · HEY (1, 2, L) · HES1 · HIF (1A, 3A) · ID (1, 2, 3, 4) · LYL1 · MESP2 · MXD4 · MYCL1 · MYCN · Myogenic regulatory factors (MyoD, Myogenin, MYF5, MYF6) · Neurogenins (1, 2, 3) · NeuroD (1, 2) · NPAS (1, 2, 3) · OLIG (1, 2) · Pho4 · Scleraxis · SIM (1, 2) · TAL (1, 2) · Twist · USF1(1.3) bHLH-ZIP(1.4) NF-1(1.5) RF-X(1.6) Basic helix-span-helix (bHSH)(2) Zinc finger DNA-binding domains (2.1) Nuclear receptor (Cys4)subfamily 1 (Thyroid hormone (α, β), CAR, FXR, LXR (α, β), PPAR (α, β/δ, γ), PXR, RAR (α, β, γ), ROR (α, β, γ), Rev-ErbA (α, β), VDR)
subfamily 2 (COUP-TF (I, II), Ear-2, HNF4 (α, γ), PNR, RXR (α, β, γ), Testicular receptor (2, 4), TLX)
subfamily 3 (Steroid hormone (Androgen, Estrogen (α, β), Glucocorticoid, Mineralocorticoid, Progesterone), Estrogen related (α, β, γ))
subfamily 4 NUR (NGFIB, NOR1, NURR1) · subfamily 5 (LRH-1, SF1) · subfamily 6 (GCNF) · subfamily 0 (DAX1, SHP)(2.2) Other Cys4(2.3) Cys2His2General transcription factors (TFIIA, TFIIB, TFIID, TFIIE (1, 2), TFIIF (1, 2), TFIIH (1, 2, 4, 2I, 3A, 3C1, 3C2))
ATBF1 · BCL (6, 11A, 11B) · CTCF · E4F1 · EGR (1, 2, 3, 4) · ERV3 · GFI1 · GLI-Krüppel family (1, 2, 3, REST, S2, YY1) · HIC (1, 2) · HIVEP (1, 2, 3) · IKZF (1, 2, 3) · ILF (2, 3) · KLF (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17) · MTF1 · MYT1 · OSR1 · PRDM9 · SALL (1, 2, 3, 4) · SP (1, 2, 4, 7, 8) · TSHZ3 · WT1 · Zbtb7 (7A, 7B) · ZBTB (16, 17, 20, 32, 33, 40) · zinc finger (3, 7, 9, 10, 19, 22, 24, 33B, 34, 35, 41, 43, 44, 51, 74, 143, 146, 148, 165, 202, 217, 219, 238, 239, 259, 267, 268, 281, 295, 300, 318, 330, 346, 350, 365, 366, 384, 423, 451, 452, 471, 593, 638, 644, 649, 655)(2.4) Cys6(2.5) Alternating composition(3) Helix-turn-helix domains (3.1) HomeodomainARX · CDX (1, 2) · CRX · CUTL1 · DBX (1, 2) · DLX (3, 4, 5) · EMX2 · EN (1, 2) · FHL (1, 2, 3) · HESX1 · HHEX · HLX · Homeobox (A1, A2, A3, A4, A5, A7, A9, A10, A11, A13, B1, B2, B3, B4, B5, B6, B7, B8, B9, B13, C4, C5, C6, C8, C9, C10, C11, C13, D1, D3, D4, D8, D9, D10, D11, D12, D13) · HOPX · IRX (1, 2, 3, 4, 5, 6, MKX) · LMX (1A, 1B) · MEIS (1, 2) · MEOX2 · MNX1 · MSX (1, 2) · NANOG · NKX (2-1, 2-2, 2-3, 2-5, 3-1, 3-2, 6-1, 6-2) · NOBOX · PBX (1, 2, 3) · PHF (1, 3, 6, 8, 10, 16, 17, 20, 21A) · PHOX (2A, 2B) · PITX (1, 2, 3) · POU domain (PIT-1, BRN-3: A, B, C, Octamer transcription factor: 1, 2, 3/4, 6, 7, 11) · OTX (1, 2) · PDX1 · SATB2 · SHOX2 · VAX1 · ZEB (1, 2)(3.2) Paired box(3.3) Fork head / winged helix(3.4) Heat Shock Factors(3.5) Tryptophan clusters(3.6) TEA domain(4) β-Scaffold factors with minor groove contacts (4.1) Rel homology region(4.2) STAT(4.3) p53(4.4) MADS box(4.6) TATA binding proteins(4.7) High-mobility group(4.10) Cold-shock domainCSDA, YBX1(4.11) Runt(0) Other transcription factors (0.2) HMGI(Y)(0.3) Pocket domain(0.6) Miscellaneoussee also transcription factor/coregulator deficiencies
B bsyn: dna (repl, cycl, reco, repr) · tscr (fact, tcrg, nucl, rnat, rept, ptts) · tltn (risu, pttl, nexn) · dnab, rnab/runp · stru (domn, 1°, 2°, 3°, 4°)Categories:- Human proteins
- Developmental genes and proteins
- MH1 domain
- MH2 domain
- R-SMAD
- Transcription factors
- Protein stubs
- Molecular and cellular biology stubs
Wikimedia Foundation. 2010.