Muscle atrophy

Muscle atrophy
Muscle atrophy
Classification and external resources
ICD-10 M62.5
ICD-9 728.2
DiseasesDB 29472
MedlinePlus 003188
MeSH D009133

Muscle atrophy, or disuse atrophy, is defined as a decrease in the mass of the muscle; it can be a partial or complete wasting away of muscle. When a muscle atrophies, this leads to muscle weakness, since the ability to exert force is related to mass. Muscle atrophy results from a co-morbidity of several common diseases, including cancer, AIDS, congestive heart failure, COPD (chronic obstructive pulmonary disease), renal failure, and severe burns; patients who have "cachexia" in these disease settings have a poor prognosis. Moreover, starvation eventually leads to muscle atrophy. Disuse of the muscles will also lead to atrophy.[1]

Contents

Clinical settings of atrophy

There are many diseases and conditions which cause a decrease in muscle mass, known as atrophy, including: Dejerine Sottas syndrome (HSMN Type III), inactivity, as seen when a cast is put on a limb, or upon extended bedrest (which can occur during a prolonged illness); cachexia - which is a "the dark side" syndrome that is a co-morbidity of cancer and Congestive Heart Failure; Chronic Obstructive Pulmonary Disease; burns, liver failure, etc. Other syndromes or conditions which can induce skeletal muscle atrophy are liver disease, and starvation.

Quality of life

Muscular atrophy decreases quality of life as the sufferer becomes unable to perform certain tasks or worsen the risks of accidents while performing those (like walking). Muscular atrophy increases the risks of falling in conditions such as IBM (inclusion body myositis). Muscular atrophy affects a major number of elderly.

Other muscles diseases, distinct from atrophy

During aging, there is a gradual decrease in the ability to maintain skeletal muscle function and mass. This condition is called "sarcopenia". The exact cause of sarcopenia is unknown, but it may be due to a combination of the gradual failure in the "satellite cells" which help to regenerate skeletal muscle fibers, and a decrease in sensitivity to or the availability of critical secreted growth factors which are necessary to maintain muscle mass and satellite cell survival.

In addition to the simple loss of muscle mass (atrophy), or the age-related decrease in muscle function (sarcopenia), there are other diseases which may be caused by structural defects in the muscle (muscular dystrophy), or by inflammatory reactions in the body directed against muscle (the myopathies).

Pathophysiology

Muscle atrophy occurs by a change in the normal balance between protein synthesis and protein degradation. During atrophy, there is a down-regulation of protein synthesis pathways, and an activation of protein breakdown pathways[2]. The particular protein degradation pathway which seems to be responsible for much of the muscle loss seen in a muscle undergoing atrophy is the ATP-dependent ubiquitin/proteasome pathway. In this system, particular proteins are targeted for destruction by the ligation of at least four copies of a small peptide called ubiquitin onto a substrate protein. When a substrate is thus "poly-ubiquitinated", it is targeted for destruction by the proteasome. Particular enzymes in the ubiquitin/proteasome pathway allow ubiquitination to be directed to some proteins but not others - specificity is gained by coupling targeted proteins to an "E3 ubiquitin ligase". Each E3 ubiquitin ligase binds to a particular set of substrates, causing their ubiquitination.

Potential treatment

Muscle atrophy can be opposed by the signaling pathways which induce muscle hypertrophy, or an increase in muscle size. Therefore one way in which exercise induces an increase in muscle mass is to downregulate the pathways which have the opposite effect.

One important rehabilitation tool for muscle atrophy includes the use of functional electrical stimulation to stimulate the muscles. This has seen a large amount of success in the rehabilitation of paraplegic patients. [3]

Since the absence of muscle-building amino acids can contribute to muscle wasting (that which is torn down must be rebuilt with like material), amino acid therapy may be helpful for regenerating damaged or atrophied muscle tissue. The branched-chain amino acids or BCAAs (leucine, isoleucine, and valine) are critical to this process, in addition to lysine and other amino acids.

Quantification

A CT scan can distinguish muscle tissue from other tissues and thereby estimate the amount of muscle tissue in the body.

Fast loss of muscle tissue (relative to normal turnover), can be approximated by the amount of urea in the urine. The equivalent nitrogen content (in gram) of urea (in mmol) can be estimated by the conversion factor 0.028 g/mmol.[4] Furthermore, 1 gram of nitrogen is roughly equivalent to 6 gram of protein, and 1 gram of protein is roughly equivalent to 4 gram of muscle tissue. Subsequently, in situations such as muscle wasting, 1 mmol of excessive urea in the urine (as measured by urine volume in litres multiplied by urea concentration in mmol/l) roughly corresponds to a muscle loss of 0.67 gram.

See also

References

  1. ^ The Number 1 Way to Prevent Muscle Loss While Dieting
  2. ^ Sandri M. 2008. Signaling in Muscle Atrophy and Hypertrophy. Physiology 23: 160-170.
  3. ^ D.Zhang et al., Functional Electrical Stimulation in Rehabilitation Engineering: A survey, Nenyang technological University, Singapore
  4. ^ Section 1.9.2 (page 76) in: Jacki Bishop; Thomas, Briony (2007). Manual of Dietetic Practice. Wiley-Blackwell. ISBN 1-4051-3525-5. 


External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Muscle Atrophy Research and Exercise System — Test subject seated in the MARES human restraint system and using the linear adapter to exercise his arms. The Muscle Atrophy Research and Exercise System (MARES), part of the Human Research Facility (HRF), will be launched in a stowed position… …   Wikipedia

  • Muscle weakness — ICD 10 M62.8 ICD 9 728.87 (728.9 before 10/01/03) DiseasesDB …   Wikipedia

  • Muscle hypertrophy — is an increase in the size of muscle cells. It differs from muscle hyperplasia, which is the formation of new muscle cells. Contents 1 Hypertrophy stimuli 1.1 Strength training 1.2 Anaerobic training …   Wikipedia

  • atrophy — atrophic /euh trof ik, euh troh fik/, adj. /a treuh fee/, n., v., atrophied, atrophying. n. 1. Also, atrophia /euh troh fee euh/. Pathol. a wasting away of the body or of an organ or part, as from defective nutrition or nerve damage. 2.… …   Universalium

  • Atrophy — For the American thrash metal band, see Atrophy (band) Atrophy Classification and external resources Mice with spinal muscular atrophy MeSH …   Wikipedia

  • Muscle — For other uses of Muscle , see Muscle (disambiguation). A top down view of skeletal muscle Muscle (from Latin …   Wikipedia

  • Atrophy — Wasting away or diminution. Muscle atrophy is wasting of muscle, decrease in muscle mass. A nerve can also show atrophy. For example, atrophy of the optic nerve diminishes vision. * * * A wasting of tissues, organs, or the entire body, as from… …   Medical dictionary

  • Muscle memory — For the term muscle memory as related to strength training, see Muscle memory (strength training). Muscle memory has been used synonymously with motor learning, which is a form of procedural memory that involves consolidating a specific motor… …   Wikipedia

  • Muscle memory (strength training) — For the term muscle memory as related to motor learning, see Muscle memory. Muscle memory has been used to describe the observation that various muscle related tasks seem to be easier to perform after previous practice, even if the task has not… …   Wikipedia

  • Muscle biopsy — Intervention Micrograph of a muscle biopsy showing ragged red fibers, a finding seen in mitochondrial diseases. Gomori trichrome stain. ICD 9 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”