- Homeodomain fold
The homeodomain fold is a
protein structural domain that bindsDNA orRNA and is thus commonly found intranscription factor s. The fold consists of a 60-amino acid helix-turn-helix structure in which three alpha helices are connected by short loop regions [http://scop.berkeley.edu/data/scop.b.b.i.html] . The N-terminal two helices areantiparallel and the longer C-terminal helix is roughly perpendicular to the axes established by the first two. It is this third helix that interacts directly with DNA. Homeodomain folds are found exclusively ineukaryote s but have high homology tolambda phage proteins that alter the expression of genes inprokaryote s. In eukaryotes, homeodomains inducecellular differentiation by initiating the cascades of coregulated genes required to produce individual tissues and organs.Homeobox genes
"Homeobox" genes are stretches of DNA about 180
nucleotides long that code for homeodomain proteins in bothvertebrate s andinvertebrate s. The existence of homeoboxes was first discovered in "Drosophila ", where the radical alterations that resulted from mutations in homeobox genes were termed "homeotic mutations". The most famous such mutation is "Antennapedia ", in which legs grow from the head of a fly instead of the expected antennae. Homeobox genes are thus critical in the establishment of body axes duringembryogenesis .equence specificity
Homeodomains can bind both specifically and nonspecifically to
B-DNA with the C-terminal recognition helix aligning in the DNA's major groove and the unstructured peptide "tail" at the N-terminus aligning in the minor groove. The recognition helix and the inter-helix loops are rich inarginine andlysine residues, which formhydrogen bond s to the DNA backbone; conservedhydrophobic residues in the center of the recognition helix aid in stabilizing the helix packing. Homeodomain proteins show a preference for the DNA sequence 5'-ATTA-3'; sequence-independent binding occurs with significantly lower affinity.POU proteins
Proteins containing a POU region consist of a homeodomain and a separate, structurally homologous POU domain that contains two
helix-turn-helix motifs and also binds DNA. The two domains are linked by a flexible loop that is long enough to stretch around the DNA helix, allowing the two domains to bind on opposite sides of the target DNA, collectively covering an eight-base segment withconsensus sequence 5'-ATGCAAAT-3'. The individual domains of POU proteins bind DNA only weakly, but have strong sequence-specific affinity when linked. Interestingly, the POU domain itself has significant structural similarity with repressors expressed inbacteriophage s, particularlylambda phage .References
# Branden C, Tooze J. (1999). "Introduction to Protein Structure" 2nd ed. Garland Publishing: New York, NY. (See especially pp159-66.)
Wikimedia Foundation. 2010.