- Calcium
Calcium (pronEng|ˈkælsiəm) is the
chemical element with the symbol Ca andatomic number 20. It has an atomic mass of 40.078. Calcium is a soft greyalkaline earth metal , and is the fifth most abundant element by mass in theEarth 's crust. Calcium is also the fifth most abundant dissolved ion inseawater by both molarity and mass, aftersodium ,chloride ,magnesium , andsulfate . [ [http://cdiac.esd.ornl.gov/ftp/cdiac74/chapter5.pdf chapter5 ] ]Calcium is essential for living
organism s, particularly in cellphysiology , where movement of the calcium ion Ca2+ into and out of thecytoplasm functions as a signal for many cellular processes. As a major material used in mineralization of bones and shells, calcium is the most abundantmetal by mass in manyanimal s.Notable characteristics
Chemically calcium is reactive and soft for a metal (though harder than lead, it can be cut with a knife with difficulty). It is a silvery metallic element that must be extracted by
electrolysis from a fused salt likecalcium chloride .Pauling, Linus "General Chemistry" p. 627, 1970 ed. Dover Publications] Once produced, it rapidly forms a grey-whiteoxide andnitride coating when exposed to air. It is somewhat difficult to ignite, unlike magnesium, but when lit, the metal burns in air with a brilliant high-intensity red light. Calcium metal reacts withwater , evolving hydrogen gas at a rate rapid enough to be noticeable, but not fast enough at room temperature to generate much heat. In powdered form, however, the reaction with water is extremely rapid, as the increased surface area of the powder accelerates the reaction with the water. Part of the slowness of the calcium-water reaction results from the metal being partly protected by insoluble whitecalcium hydroxide . In water solutions of acids where the salt is water soluble, calcium reacts vigorously.Calcium, though it has a higher resistivity than
copper oraluminium , weight for weight, allowing for its much lower density calcium is a rather better conductor than either. However, its use in terrestrial applications is usually limited by its high reactivity with air. In vacuum use, calcium tends to sublime unless plated.Calcium salts are colorless from any contribution of the calcium, and ionic solutions of calcium (Ca2+) are colorless as well. Many calcium salts are not soluble in water. When in solution, the calcium ion to the human taste varies remarkably, being reported as mildly salty, sour, "mineral like" or even "soothing." It is apparent that many animals can taste, or develop a taste, for calcium, and use this sense to detect the mineral in
salt lick s or other sources. [ [http://physrev.physiology.org/cgi/content/full/81/4/1567 Calcium: Taste, Intake, and Appetite - Tordoff 81 (4): 1567 - Physiological Reviews ] ] In human nutrition, soluble calcium salts may be added to tart juices without much effect to the average palate.Calcium is the fifth most abundant element by mass in the human body, where it is a common cellular ionic messenger with many functions, and serves also as a structural element in bone. It is the relatively high atomic-numbered calcium in the skeleton which causes bone to be radio-opaque. Of the human body's solid components after drying (as for example, after
cremation ), about a third of the total mass is the approximately one kilogram of calcium which composes the average skeleton (the remainder being mostly phosphorus and oxygen).Occurrence
Calcium is not naturally found in its elemental state. Calcium occurs most commonly in
sedimentary rocks in the mineralscalcite ,dolomite andgypsum . It also occurs in igneous andmetamorphic rocks chiefly in thesilicate minerals :plagioclase ,amphibole s,pyroxene s andgarnet s."See also ."
Applications
Some uses are:
* as areducing agent in the extraction of other metals, such asuranium ,zirconium , andthorium .
* as a deoxidizer, desulfurizer, or decarbonizer for various ferrous and nonferrousalloy s.
* as an alloying agent used in the production ofaluminium ,beryllium ,copper ,lead , andmagnesium alloys.
* in the making ofcement s and mortars to be used inconstruction .
* in the making ofcheese , where calciumions influence the activity ofrennin in bringing about thecoagulation of milk.Calcium compounds
*
Calcium carbonate (CaCO3) used in manufacturingcement and mortar, lime,limestone (usually used in the steel industry); aids in production in the glass industry, also has chemical and optical uses as mineral specimens intoothpastes , for example.
*Calcium hydroxide solution (Ca(OH)2) (also known aslimewater ) is used to detect the presence of carbon dioxide by being bubbled through a solution. It turns cloudy where CO2 is present.
*Calcium arsenate (Ca3(AsO4)2) is used ininsecticide s.
*Calcium carbide (CaC2) is used: to makeacetylene gas (for use in acetylenetorch es forwelding ) and in the manufacturing ofplastic s.
*Calcium chloride (CaCl2) is used: inice removal anddust control on dirt roads, in conditioner forconcrete , as an additive in cannedtomato es, and to provide body forautomobile tire s.
* Calcium cyclamate (Ca(C6H11NHSO3)2) was used as a sweetening agent but is no longer permitted for use because of suspected cancer-causing properties.
* Calcium gluconate (Ca(C6H11O7)2) is used as afood additive and invitamin pills.
*Calcium hypochlorite (Ca(OCl)2) is used: as aswimming pool disinfectant , as ableach ing agent, as an ingredient indeodorant , and inalgaecide andfungicide .
* Calcium permanganate (Ca(MnO4)2) is used in liquid rocket propellant,textile production, as a water sterilizing agent and in dental procedures.
*Calcium phosphate (Ca3(PO4)2) is used as a supplement foranimal feed,fertilizer , in commercial production fordough andyeast products, in the manufacture ofglass , and in dental products.
*Calcium phosphide (Ca3P2) is used infireworks ,rodenticide ,torpedo es and flares.
*Calcium stearate (Ca(C18H35O2)2 is used in the manufacture ofwax crayon s,cement s, certain kinds ofplastic s andcosmetics , as afood additive , in the production of water resistant materials and in the production ofpaint s.
*Calcium sulfate (CaSO4·2H2O) is used as common blackboard chalk, as well as, in its hemihydrate form being more well known as Plaster of Paris.
*Calcium tungstate (CaWO4) is used in luminouspaint s,fluorescent light s and inX-ray studies.
*Hydroxylapatite (Ca5(PO4)3(OH), but is usually written Ca10(PO4)6(OH)2) makes up seventy percent ofbone . Also carbonated-calcium deficient hydroxylapatite is the main mineral of whichdental enamel anddentin are comprised.H and K lines
In the visible portion of the spectrum of many stars, including the
Sun , strong absorption lines of singly-ionized calcium are shown. Prominent among these are the H-line at 3968.5 Å and the K line at 3933.7 Å of singly-ionized calcium, or Ca II. For the Sun and stars with low temperatures, the prominence of the H and K lines can be an indication of strong magnetic activity in thechromosphere . Measurement of periodic variations of these active regions can also be used to deduce the rotation periods of these stars. [cite web
author=Staff
year=1995
url =http://www.mtwilson.edu/hk/
title =H-K Project
publisher =Mount Wilson Observatory
accessdate = 2006-08-10 ]History
Calcium (
Latin "calx," meaning "limestone") was known as early as the first century when the Ancient Romans prepared lime ascalcium oxide . It was not isolated until 1808 inEngland when Sir Humphry Davy electrolyzed a mixture of lime and mercuric oxide. Davy was trying to isolate calcium; when he heard that Swedish chemistJöns Jakob Berzelius and Pontin prepared calcium amalgam by electrolyzing lime in mercury, he tried it himself. He worked with electrolysis throughout his life and also discovered/isolatedsodium ,potassium ,magnesium ,boron andbarium .Compounds
Calcium, combined with
phosphate to formhydroxylapatite , is the mineral portion of human and animal bones and teeth. The mineral portion of somecoral s can also be transformed into hydroxylapatite.Calcium oxide (lime) is used in many chemical refinery processes and is made by heating and carefully adding water tolimestone . When lime is mixed with sand, it hardens into a mortar and is turned intoplaster bycarbon dioxide uptake. Mixed with other compounds, lime forms an important part ofPortland cement .Calcium carbonate (CaCO3) is one of the common compounds of calcium. It is heated to form quicklime (CaO), which is then added to water (H2O). This forms another material known as slaked lime (Ca(OH)2), which is an inexpensive base material used throughout the chemical industry. Chalk, marble, and limestone are all forms of calcium carbonate.When water percolates through
limestone or other solublecarbonate rocks, it partially dissolves the rock and causes cave formation and characteristicstalactite s andstalagmite s and also formshard water . Other important calcium compounds arecalcium nitrate ,calcium sulfide ,calcium chloride ,calcium carbide ,calcium cyanamide andcalcium hypochlorite .Isotopes
Calcium has four stable
isotope s (40Ca and 42Ca through 44Ca), plus two more isotopes (46Ca and 48Ca) that have such long half-lives that for all practical purposes they can be considered stable. It also has acosmogenic isotope ,radioactive 41Ca, which has ahalf-life of 103,000 years. Unlikecosmogenic isotope s that are produced in the atmosphere, 41Ca is produced byneutron activation of 40Ca. Most of its production is in the upper metre or so of the soil column, where the cosmogenic neutron flux is still sufficiently strong. 41Ca has received much attention in stellar studies because it decays to 41K, a critical indicator of solar-system anomalies.97% of naturally occurring calcium is in the form of 40Ca. 40Ca is one of the daughter products of 40K decay, along with 40Ar. While
K-Ar dating has been used extensively in the geological sciences, the prevalence of 40Ca in nature has impeded its use in dating. Techniques usingmass spectrometry and a double spike isotope dilution have been used for K-Ca age dating.The most abundant isotope, 40Ca, has a nucleus of 20
proton s and 20neutron s. This is the heaviest stable isotope of any element which has equal numbers of protons and neutrons. In supernova explosions, calcium is formed from the reaction of carbon with various numbers of alpha particles (helium nuclei), until the most common calcium isotope (containing 10 helium nuclei) has been synthesized.Fact|date=April 2008Nutrition
Calcium is an important component of a
healthy diet . Calcium is essential for the normal growth and maintenance of bones and teeth, and calcium requirements must be met throughout life. Long-term calcium deficiency can lead to rickets and poor blood clotting and in case of a menopausal woman, it can lead toosteoporosis , in which the bone deteriorates and there is an increased risk of fractures. While a lifelong deficit can affect bone and tooth formation, over-retention can cause hypercalcemia (elevated levels of calcium in the blood), impaired kidney function and decreased absorption of other minerals.Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D and fluoride. Washington DC: The National Academies Press, 1997] High calcium intakes or high calcium absorption were previously thought to contribute to the development of kidney stones. However, more recent studies show that high dietary calcium intakes actually decrease the risk for kidney stones.Curhan G, Willett WC, Rimm E, Stampher MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med 1993;328:833-8]Vitamin D is needed to absorb calcium.Dairy product s, such as milk and cheese, are a well-known source of calcium. However, some individuals are allergic to dairy products and even more people, particularly those of non Indo-European descent, are lactose-intolerant, leaving them unable to consume non-fermented dairy products in quantities larger than about half a liter per serving. Others, such asvegans , avoid dairy products for ethical and health reasons. Fortunately, many good sources of calcium exist. These includeseaweeds such askelp ,wakame andhijiki ; nuts and seeds (likealmond s andsesame ); blackstrapmolasses ;beans ;oranges ;figs ;quinoa ;amaranth ;collard greens ;okra ;rutabaga ;broccoli ;dandelion leaves;kale ; and fortified products such as orange juice andsoy milk . (However, calcium fortified orange juice often containsvitamin D3 derived fromlanolin , and is thus unacceptable for vegans. [cite web|url=http://findarticles.com/p/articles/mi_m0FDE/is_3_23/ai_n6138556|title=Sources of vitamin D in orange juice] ) An overlooked source of calcium is eggshell, which can be ground into a powder and mixed into food or a glass of water. [cite journal |author=Anne Schaafsma, Gerard M Beelen |title=Eggshell powder, a comparable or better source of calcium than purified calcium carbonate: piglet studies |journal=Journal of the Science of Food and Agriculture |volume=79 |issue=12 |pages=1596–1600 |year=1999 |url=http://www3.interscience.wiley.com/cgi-bin/abstract/63003036/ABSTRACT |doi=10.1002/(SICI)1097-0010(199909)79:12<1596::AID-JSFA406>3.0.CO;2-A |format=abstract] cite journal |author=Schaafsma A, van Doormaal JJ, Muskiet FA, Hofstede GJ, Pakan I, van der Veer E |title=Positive effects of a chicken eggshell powder-enriched vitamin-mineral supplement on femoral neck bone mineral density in healthy late post-menopausal Dutch women |journal=Br. J. Nutr. |volume=87 |issue=3 |pages=267–75 |year=2002 |month=March |pmid=12064336 |doi=10.1079/BJNBJN2001515 |url=] cite journal |author=Rovenský J, Stancíková M, Masaryk P, Svík K, Istok R |title=Eggshell calcium in the prevention and treatment of osteoporosis |journal=Int J Clin Pharmacol Res |volume=23 |issue=2-3 |pages=83–92 |year=2003 |pmid=15018022 |doi= |url=] Cultivated vegetables generally have less calcium than wild plants. [ [http://www.beyondveg.com/nieft-k/instincto-guide/instincto-guide1e.shtml Original Wild Foods vs. Available Foods Today for Instinctos ] ]The calcium content of most foods can be found in the USDA National Nutrient Database. [ [http://www.nal.usda.gov/fnic/foodcomp/search USDA National Nutrient Database] ]
Dietary calcium supplements
Calcium supplements are used to prevent and to treat calcium deficiencies. Most experts recommend that supplements be taken with food and that no more than 600 mg should be taken at a time because the percent of calcium absorbed decreases as the amount of calcium in the supplement increases. It is recommended to spread doses throughout the day. Recommended daily calcium intake for adults ranges from 1000 to 1500 mg. It is recommended to take supplements with food to aid in absorption.
Vitamin D is added to some calcium supplements. Vitamin D is not necessary, but it might be beneficial if the person has low vitamin D status. Proper vitamin D status is important because vitamin D is converted to a hormone in the body which then induces the synthesis of intestinal proteins responsible for calcium absorption. [Combs, G: "The Vitamins", page 161. Academic Press, 2008]* The absorption of calcium from most food and commonly-used dietary supplements is very similar. [Weaver, CM: "Calcium" in Present Knowledge in Nutrition, 9th Ed., Vol I, page 377. ILSI Press, 2006.] This is contrary to what many calcium supplement manufacturers claim in their promotional materials.
*Milk is an excellent source of dietary calcium because it has a high concentration of calcium and the calcium in milk is excellently absorbed. [Weaver, CM: "Calcium" in Present Knowledge in Nutrition, 9th Ed., Vol I, page 377. ILSI Press, 2006]
*Calcium carbonate is the most common and least expensive calcium supplement. It should be taken with food. The absorption of calcium from calcium carbonate is similar to the absorption of calcium from milk. [Zhao, Y. et al: "Calcium bioavailability of calcium carbonate fortified soy milk is equivalent to cow's milk in young women", "J. Nutr.", 135(10):2379] While most people digest calcium carbonate very well, some might develop gastrointestinal discomfort or gas. Taking magnesium with it can help to avoid constipation. Calcium carbonate is 40% elemental calcium. 1000 mg will provide 400 mg of calcium. However, supplement labels will usually indicate how much calcium is present in each serving, not how much calcium carbonate is present.
*Antacids , such as Tums, frequently contain calcium carbonate, and are a very commonly-used, inexpensive calcium supplement.
*Coral Calcium is a salt of calcium derived from fossilized coral reefs. Coral calcium is composed of calcium carbonate and trace minerals.
*Calcium citrate can be taken without food and is the supplement of choice for individuals with achlorhydria or who are taking histamine-2 blockers or proton-pump inhibitors.Straub, DA: "Calcium supplementation in clinical practice: a review of forms, doses, and indications", "Nutr. Clin. Pract.", 22(3):286, 2007.] It is more easily digested and absorbed than calcium carbonate if taken on empty stomach and less likely to cause constipation and gas than calcium carbonate. It also has a lower risk of contributing to the formation of kidney stones. Calcium citrate is about 21% elemental calcium. 1000 mg will provide 210 mg of calcium. It is more expensive than calcium carbonate and more of it must be taken to get the same amount of calcium.
*Calcium phosphate costs more than calcium carbonate, but less than calcium citrate. It is easily absorbed and is less likely to cause constipation and gas than either.
*Calcium lactate has similar absorption as calcium carbonate [Martin, BR: "Calcium absorption from three salts and CaSo4- fortified bread in premenopausal women", "J. Agric. Food Chem.", 50:3874, 2002.] , but is more expensive. Calcium lactate and calcium gluconate are less concentrated forms of calcium and are not practical oral supplements.
* Calciumchelates are synthetic calcium compounds, with calcium bound to an organic molecule, such as malate, aspartate, or fumarate. These forms of calcium may be better absorbed on an empty stomach. However, in general they are absorbed similarly to calcium carbonate and other common calcium supplements when taken with food. [Weaver, CM, et al: "Absorption of calcium fumarate salts is equivalent to other calcium salts when measured in the rat model.", "J. Agric. Food Chem.", 50(17):4974, 2002] The 'chelate' mimics the action that natural food performs by keeping the calcium soluble in the intestine. Thus, on an empty stomach, in some individuals, chelates might theoretically be absorbed better.
* Microcrystalline hydroxyapatite (MH) is marketed as a calcium supplement, and has in some randomized trials been found to be more effective than calcium carbonate.
*Orange juice with calcium added is a good dietary source for persons who havelactose intolerance .The National Nutritional Food Association — NNFA (Newport Beach, Calif.) defines a chelate very specifically, and several criteria must be met in order for chelation to actually occur. Some of the claimed "chelates" on the market are the various Krebs (Citric Acid) Cycle chelates, such as citrate, malate, and aspartate. Dicalcium malate (chelated with malic acid) is a newer form of a true calcium chelate. It contains a high amount of elemental calcium (30%).
In July 2006, a report citing research from
Fred Hutchinson Cancer Research Center in Seattle, Washington claimed that women in their 50s gained 5 pounds less in a period of 10 years by taking more than 500 mg of calcium supplements than those who did not. However, the doctor in charge of the study, Dr. Alejandro J. Gonzalez also noted it would be "going out on a limb" to suggest calcium supplements as a weight-limiting aid.cite web | title=Calcium May Help With Weight Loss | accessdate=2007-07-10 | url=http://www.rxalternativemedicine.com/headlines_news.php#headline77|author=Anne Harding ]Prevention of fractures due to osteoporosis
Such studies often do not test calcium alone, but rather combinations of calcium and vitamin D.
Randomized controlled trials found both positivecite journal |author=Dawson-Hughes B, Harris SS, Krall EA, Dallal GE |title=Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older |journal=N. Engl. J. Med. |volume=337 |issue=10 |pages=670–6 |year=1997 |pmid=9278463 |doi=] and negativecite journal |author=Jackson RD, LaCroix AZ, Gass M, "et al" |title=Calcium plus vitamin D supplementation and the risk of fractures |journal=N. Engl. J. Med. |volume=354 |issue=7 |pages=669–83 |year=2006 |pmid=16481635 |doi=10.1056/NEJMoa055218] cite journal |author=Grant AM, Avenell A, Campbell MK, "et al" |title=Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial |journal=Lancet |volume=365 |issue=9471 |pages=1621–8 |year=2005 |pmid=15885294 |doi=10.1016/S0140-6736(05)63013-9] cite journal |author=Porthouse J, Cockayne S, King C, "et al" |title=Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care |journal=BMJ |volume=330 |issue=7498 |pages=1003 |year=2005 |pmid=15860827 |doi=10.1136/bmj.330.7498.1003] cite journal |author=Prince RL, Devine A, Dhaliwal SS, Dick IM |title=Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women |journal=Arch. Intern. Med. |volume=166 |issue=8 |pages=869–75 |year=2006 |pmid=16636212 |doi=10.1001/archinte.166.8.869] effects. The different results may be explained by doses of calcium and underlying rates of calcium supplementation in the control groups.cite journal |author=Fletcher RH |title=Calcium plus vitamin D did not prevent hip fracture or colorectal cancer in postmenopausal women |journal=ACP J. Club |volume=145 |issue=1 |pages=4–5 |year=2006 |pmid=16813354 |doi=|url=http://www.acpjc.org/Content/145/1/issue/ACPJC-2006-145-1-004.htm |format=subscription required] However, it is clear that increasing the intake of calcium promotes deposition of calcium in the bones, where it is of more benefit in preventing the compression fractures resulting from the osteoporotic thinning of thedendritic web of the bodies of the vertebrae, than it is at preventing the more serious cortical bone fractures which happen at hip and wrist.Prevention of cancer?
A
meta-analysis cite journal |author=Weingarten MA, Zalmanovici A, Yaphe J |title=Dietary calcium supplementation for preventing colorectal cancer and adenomatous polyps |journal=Cochrane database of systematic reviews (Online) |volume= |issue=3 |pages=CD003548 |year=2005 |pmid=16034903 |doi=10.1002/14651858.CD003548.pub3] by the internationalCochrane Collaboration of tworandomized controlled trials cite journal |author=Baron JA, Beach M, Mandel JS, "et al" |title=Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group |journal=N. Engl. J. Med. |volume=340 |issue=2 |pages=101–7 |year=1999 |pmid=9887161 |doi=] cite journal |author=Bonithon-Kopp C, Kronborg O, Giacosa A, Räth U, Faivre J |title=Calcium and fibre supplementation in prevention of colorectal adenoma recurrence: a randomised intervention trial. European Cancer Prevention Organisation Study Group |journal=Lancet |volume=356 |issue=9238 |pages=1300–6 |year=2000 |pmid=11073017 |doi=] found that calcium "might contribute to a moderate degree to the prevention of adenomatouscolonic polyps ".More recent studies were conflicting, and one which was positive for effect (Lappe, et al.) did control for a possible anti-carcinogenic effect of
vitamin D , which was found to be an independent positive influence from calcium-alone on cancer risk (see second study below) [for abstract see PMID 17556697] .
* Arandomized controlled trial found that 1000 mg of elemental calcium and 400 IU of vitamin D3 had no effect on colorectal cancercite journal |author=Wactawski-Wende J, Kotchen JM, Anderson GL, "et al" |title=Calcium plus vitamin D supplementation and the risk of colorectal cancer |journal=N. Engl. J. Med. |volume=354 |issue=7 |pages=684–96 |year=2006 |pmid=16481636 |doi=10.1056/NEJMoa055222]
* Arandomized controlled trial found that 1400–1500 mg supplemental calcium and 1100 IU vitamin D3 reduced aggregated cancers with arelative risk of 0.402.cite journal |author=Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP |title=Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial |journal=Am. J. Clin. Nutr. |volume=85 |issue=6 |pages=1586–91 |year=2007 |pmid=17556697 |doi=]
* An observationalcohort study found that high calcium and vitamin D intake was associated with "lower risk of developing premenopausal breast cancer."cite journal |author=Lin J, Manson JE, Lee IM, Cook NR, Buring JE, Zhang SM |title=Intakes of calcium and vitamin d and breast cancer risk in women |journal=Arch. Intern. Med. |volume=167 |issue=10 |pages=1050–9 |year=2007 |pmid=17533208 |doi=10.1001/archinte.167.10.1050]Overdose
Exceeding the recommended daily calcium intake for an extended period of time can result in
hypercalcemia .See also
*
Calcium metabolism
*Calcium in biology
*
*Disorders of calcium metabolism Notes
References
* Rebecca J. Donatelle. Health, The Basics. 6th ed. San Francisco: Pearson Education, Inc. 2005.
External links
* [http://www.webelements.com/webelements/elements/text/Ca/index.html WebElements.com — Calcium]
* [http://www.nal.usda.gov/fnic/foodcomp/Data/SR17/wtrank/sr17a301.pdf USDA National Nutrient Database, Calcium content of selected foods]
Wikimedia Foundation. 2010.