Complement receptor 1

Complement receptor 1
Complement component (3b/4b) receptor 1 (Knops blood group)

PDB rendering based on 1gkg.
Symbols CR1; C3BR; C4BR; CD35; KN
External IDs OMIM120620 HomoloGene55474 GeneCards: CR1 Gene
RNA expression pattern
PBB GE CR1 206244 at tn.png
PBB GE CR1 208488 s at tn.png
PBB GE CR1 217552 x at tn.png
More reference expression data
Species Human Mouse
Entrez 1378 n/a
Ensembl ENSG00000203710 n/a
UniProt P17927 n/a
RefSeq (mRNA) NM_000573.3 n/a
RefSeq (protein) NP_000564.2 n/a
Location (UCSC) Chr 1:
207.67 – 207.81 Mb
PubMed search [1] n/a

Erythrocyte complement receptor 1 (CR1, also known as CD35, C3b/C4b receptor and immune adherence receptor) is a human gene.[1][2]

This protein encoded by this gene is a member of the regulators of complement activation (RCA) family and is located in the 'cluster RCA' region of chromosome 1. The gene encodes a monomeric single-pass type I membrane glycoprotein found on erythrocytes, leukocytes, glomerular podocytes, and splenic follicular dendritic cells. The Knops blood group system is a system of antigens located on this protein. The protein mediates cellular binding to particles and immune complexes that have activated complement. Decreases in expression of this protein and/or mutations in its gene have been associated with gallbladder carcinomas, mesangiocapillary glomerulonephritis, systemic lupus erythematosus and sarcoidosis. Mutations in this gene have also been associated with a reduction in Plasmodium falciparum rosetting, conferring protection against severe malaria. Alternate allele-specific splice variants, encoding different isoforms, have been characterized. Additional allele specific isoforms, including a secreted form, have been described but have not been fully characterized.[1]

In primates, CR1 serves as the main system for processing and clearance of complement opsonized immune complexes. It has been shown that CR1 can act as a negative regulator of the complement cascade, mediate immune adherence and phagocytosis and inhibit both the classic and alternative pathways. The number of CR1 molecules decreases with aging of erythrocytes in normal individuals and is also decreased in pathological conditions such as systemic lupus erythematosus (SLE), HIV infection, some haemolytic anaemia s and other conditions featuring immune complexes. In mice, CR1 is an alternatively spliced variant of the complement receptor 2 (CR2) gene.

Certain alleles of this gene have been statistically associated with an increased risk of developing late-onset Alzheimer's Disease.[3]


1q32 region

In humans, the CR1 gene is located at on the long arm of chromosome 1 at band 32 (1q32) and lies within a complex of immunoregulatory genes. In 5’-3’ order the genes in this region are: membrane cofactor protein - CR1- complement receptor type 2 - decay-accelerating factor - C4-binding protein.

  • Membrane cofactor protein is a widely distributed C3b/C4b binding regulatory glycoprotein of the complement system;
  • decay-accelerating factor (DAF: CD55: Cromer antigen) protects host cells from complement-mediated damage by regulating the activation of C3 convertases on host cell surfaces;
  • complement receptor 2 is the C3d receptor.

Factor H, another immunoregulatory protein, also maps to this location.


The most common form of the CR1 gene (CR1*1) is composed of 38 exons spanning 133kb encoding a protein of 2039 amino acids and has a predicted molecular weight of 220 kDa. Large insertions and deletions have given rise to four structurally variant genes and some alleles may extend up to 160 kb and 9 additional exons. The transcription start site has been mapped to 111 bp upstream of the translation initiation codon ATG and there is another possible start site 29 bp further upstream. The promoter region lacks a distinct TATA box sequence. The gene is expressed principally on erythrocytes, monocytes, neutrophils and B cells but is also present on some T lymphocytes, mast cells and glomerular podocytes.

The mean number of complement receptor 1 (CR1) molecules on erythrocytes in normal individuals lies within the range of 100-1000 molecules per cell. Two codominant alleles exist - one controlling high and the other low expression. Homozygotes differ by a factor of 10-20: heterozygotes typically have 500-600 copies per erythrocyte. These two alleles appear to have originated before the divergence of the European and African populations.


The encoded protein has a 47 amino acid signal peptide, an extracellular domain of 1930 residues, a 25 residue transmembrane domain and a 43 amino acid C terminal cytoplasmic region. The leader sequence and 5'-untranslated region are contained in one exon. The large extracellular domain of CR1, which has 25 potential N-glycosylation sites, can be divided into 30 short consensus repeats (SCRs) (also known as complement control protein repeats (CCPs) or sushi domains), each having 60 to 70 amino acids. The sequence homology between SCRs ranges between 60 to 99 percent. The transmembrane region is encoded by 2 exons and the cytoplasmic domain and the 3'-untranslated regions are coded for by two separate exons.

The 30 or so SCRs are further grouped into four longer regions termed long homologous repeats (LHRs) each encoding approximately 45 kDa of protein and designated LHR-A, -B, -C, and -D. The first three have seven SCRs while LHR-D has 9 or more. Each LHR is composed of 8 exons and within an LHR, SCR 1, 5, and 7 are each encoded by a single exon, SCR 2 and 6 are each encoded by 2 exons, and a single exon codes for SCR 3 and 4. The LHR seem to have arisen as a result of unequal crossing over and the event that gave rise to LHR-B seems to have occurred within the fourth exon of either LHR-A or –C. To date the atomic structure have been solved for SCRs 15-16, 16 & 16-17.


Four alleles are known with predicted protein molecular weights of 190 kDa, 220 kDa, 250 kDa and 280kDa are known. Multiple size variants (55kDa-220kDa) are also found among non-human primates and a partial amino-terminal duplication (CR1-like gene) that encodes the short (55kDa-70kDa) forms expressed on non human erythrocytes. These short CR1 forms, some of which are glycosylphosphatidylinositol (GPI) anchored, are expressed on erythrocytes and the 220kDa molecular weight CR1 form is expressed on monocytes. The gene including the repeats is highly conserved in primates possibly because of the ability of the repeats to bind complement. LHR-A binds preferentially to the complement component C4b: LHR-B and LHR-C bind to C3b and also, albeit with a lower affinity, to C4b. Curiously the human CR1 gene appears to have an unusual protein conformation but the significance of this finding is not clear.


Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) interacts with uninfected erythrocytes. This 'stickiness', known as rosetting, is believed to be a strategy used by the parasite to remain sequestered in the microvasculature to avoid destruction in the spleen and liver. Erythrocyte rosetting causes obstruction of the blood flow in microcapillaries. There is a direct interaction between PfEMP1 and a functional site of complement receptor type 1 on uninfected erythrocytes.

Role in blood Groups

The Knops antigen was the 25th blood group system recognized and consists of the single antigen York (Yk) a with the following allelic pairs:

  • Knops (Kn) a and b
  • McCoy (McC) a and b
  • Swain-Langley (Sl) 1 and 2

The antigen is known to lie within the CR1 protein repeats and was first described in 1970 in a 37-year-old Caucasian woman. Racial differences exist in the frequency of these antigens: 98.5% and 96.7% of American Caucasians and Africans respectively are positive for McC(a). 36% of a Mali population were Kn(a) and 14% of exhibited the null (or Helgeson) phenotype compared with only 1% in the American population. The frequencies of McC (b) and Sl (2) are higher in Africans compared with Europeans and while the frequency of McC (b) was similar between Africans from the USA or Mali, the Sl (b) phenotype is significantly more common in Mali - 39% and 65% respectively. In Gambia the Sl (2)/McC(b) phenotype appears to have been positively selected - presumably due to malaria. 80% of Papua New Guineans have the Helgeson phenotype and case control studies suggest this phenotype has a protective effect against severe malaria.


  1. ^ a b "Entrez Gene: CR1 complement component (3b/4b) receptor 1 (Knops blood group)". 
  2. ^ Moulds JM, Nickells MW, Moulds JJ, Brown MC, Atkinson JP (May 1991). "The C3b/C4b receptor is recognized by the Knops, McCoy, Swain-langley, and York blood group antisera". J. Exp. Med. 173 (5): 1159–63. doi:10.1084/jem.173.5.1159. PMC 2118866. PMID 1708809. 
  3. ^ Lambert JC, Heath S, Even G, et al. (September 2009). "Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease". Nat. Genet. 41 (10): 1094–9. doi:10.1038/ng.439. PMID 19734903. Lay summary – TIME Magazine (2009-09-06). 

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Complement receptor 2 — Complement component (3d/Epstein Barr virus) receptor 2 PDB rendering based on 1ghq …   Wikipedia

  • Complement receptor 3 — (CR3) is a human macrophage cell surface receptor that recognizes C3b when bound to the surface of foreign cells. Binding to the receptor causes phagocytosis and destruction of the foreign cell.CR3 belongs to a family of cell surface receptors… …   Wikipedia

  • Complement receptor — A complement receptor is a receptor of the complement system, a part of the mediated innate immune system. Complement receptors are responsible for detecting pathogens by mechanisms not mediated by antibodies. Complement activity is not antigen… …   Wikipedia

  • Complement receptor of the immunoglobulin family — V set and immunoglobulin domain containing 4 Identifiers Symbol VSIG4 Entrez 11326 HUGO …   Wikipedia

  • Complement deficiency — Classification and external resources ICD 10 D84.1 ICD 9 279.8 …   Wikipedia

  • Complement 2 deficiency — Classification and external resources ICD 10 D84.1 ICD 9 279.8 …   Wikipedia

  • Complement 3 deficiency — Classification and external resources OMIM 120700 DiseasesDB 1869 Complement 3 deficiency is a genetic condition affecting complement …   Wikipedia

  • Complement 4 deficiency — Classification and external resources OMIM 120820 DiseasesDB 1873 Complement 4 deficiency is a genetic condition affecting complement …   Wikipedia

  • Complement control protein — The complement system distinguishes self from non self via a range of specialized cell surface and soluble proteins. These homologous proteins belong to a family called the regulators of complement activation (RCA) or complement control proteins… …   Wikipedia

  • Complement component 5 — PDB rendering based on 3cu7. Available st …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”