Materials science

Materials science
Simulation of the outside of the Space Shuttle as it heats up to over 1,500 °C (2,730 °F) during re-entry into the Earth's atmosphere

Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates elements of applied physics and chemistry. With significant media attention focused on nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront at many universities. It is also an important part of forensic engineering and failure analysis. Materials science also deals with fundamental properties and characteristics of materials.

Contents

History

The material of choice of a given era is often a defining point. Phrases such as Stone Age, Bronze Age, and Steel Age are good examples. Originally deriving from the manufacture of ceramics and its putative derivative metallurgy, materials science is one of the oldest forms of engineering and applied science. Modern materials science evolved directly from metallurgy, which itself evolved from mining and (likely) ceramics and the use of fire. A major breakthrough in the understanding of materials occurred in the late 19th century, when the American scientist Josiah Willard Gibbs demonstrated that the thermodynamic properties related to atomic structure in various phases are related to the physical properties of a material. Important elements of modern materials science are a product of the space race: the understanding and engineering of the metallic alloys, and silica and carbon materials, used in the construction of space vehicles enabling the exploration of space. Materials science has driven, and been driven by, the development of revolutionary technologies such as plastics, semiconductors, and biomaterials.

Before the 1960s (and in some cases decades after), many materials science departments were named metallurgy departments, from a 19th and early 20th century emphasis on metals. The field has since broadened to include every class of materials, including: ceramics, polymers, semiconductors, magnetic materials, medical implant materials and biological materials (materiomics).

Fundamentals

The basis of materials science involves relating the desired properties and relative performance of a material in a certain application to the structure of the atoms and phases in that material through characterization. The major determinants of the structure of a material and thus of its properties are its constituent chemical elements and the way in which it has been processed into its final form. These characteristics, taken together and related through the laws of thermodynamics, govern a material’s microstructure, and thus its properties.

The manufacture of a perfect crystal of a material is currently physically impossible. Instead materials scientists manipulate the defects in crystalline materials such as precipitates, grain boundaries (Hall-Petch relationship), interstitial atoms, vacancies or substitutional atoms, to create materials with the desired properties.

Not all materials have a regular crystal structure. Polymers display varying degrees of crystallinity, and many are completely non-crystalline. Glasses, some ceramics, and many natural materials are amorphous, not possessing any long-range order in their atomic arrangements. The study of polymers combines elements of chemical and statistical thermodynamics to give thermodynamic, as well as mechanical, descriptions of physical properties.

In addition to industrial interest, materials science has gradually developed into a field which provides tests for condensed matter or solid state theories. New physics emerge because of the diverse new material properties which need to be explained.

Classes of materials

Materials science encompasses various classes of materials, each of which may constitute a separate field. There are several ways to classify materials. For instance by the type of bonding between the atoms. The traditional groups are ceramics, metals and polymers based on atomic structure and chemical composition. New materials has resulted in more classes.[1] One way of classifying materials is:

Materials in industry

Radical materials advances can drive the creation of new products or even new industries, but stable industries also employ materials scientists to make incremental improvements and troubleshoot issues with currently used materials. Industrial applications of materials science include materials design, cost-benefit tradeoffs in industrial production of materials, processing techniques (casting, rolling, welding, ion implantation, crystal growth, thin-film deposition, sintering, glassblowing, etc.), and analytical techniques (characterization techniques such as electron microscopy, x-ray diffraction, calorimetry, nuclear microscopy (HEFIB), Rutherford backscattering, neutron diffraction, small-angle X-ray scattering (SAXS), etc.).

Besides material characterization, the material scientist/engineer also deals with the extraction of materials and their conversion into useful forms. Thus ingot casting, foundry techniques, blast furnace extraction, and electrolytic extraction are all part of the required knowledge of a metallurgist/engineer. Often the presence, absence or variation of minute quantities of secondary elements and compounds in a bulk material will have a great impact on the final properties of the materials produced, for instance, steels are classified based on 1/10 and 1/100 weight percentages of the carbon and other alloying elements they contain. Thus, the extraction and purification techniques employed in the extraction of iron in the blast furnace will have an impact of the quality of steel that may be produced.

The overlap between physics and materials science has led to the offshoot field of materials physics, which is concerned with the physical properties of materials. The approach is generally more macroscopic and applied than in condensed matter physics. See important publications in materials physics for more details on this field of study.

Ceramics and glasses

Si3N4 ceramic bearing parts

Another application of the material sciences is the structures of glass and ceramics, typically associated with the most brittle materials. Bonding in ceramics and glasses are using covalent and ionic-covalent types with SiO2 (silica or sand) as a fundamental building block. Ceramics are as soft as clay and as hard as stone and concrete. Usually, they are crystalline in form. Most glasses contain a metal oxide fused with silica. At high temperatures used to prepare glass, the material is a viscous liquid. The structure of glass forms into an amorphous state upon cooling. Windowpanes and eyeglasses are important examples. Fibers of glass are also available. Diamond and carbon in its graphite form are considered to be ceramics.

Engineering ceramics are known for their stiffness, high temperature, and stability under compression and electrical stress. Alumina, silica carbide, and tungsten carbide are made from a fine powder of their constituents in a process of sintering with a binder. Hot pressing provides higher density material. Chemical vapor deposition can place a film of a ceramic on another material. Cermets are ceramic particles containing some metals. The wear resistance of tools is derived from cemented carbides with the metal phase of cobalt and nickel typically added to modify properties.

Composite materials

A cloth of woven carbon fiber filaments is commonly used for reinforcement in composite materials.

Another application of material science in industry is the making of composite materials. Composite materials are structured materials composed of two or more macroscopic phases. Applications range from structural elements such as steel-reinforced concrete, to the thermally insulative tiles which play a key and integral role in NASA's Space Shuttle thermal protection system which is used to protect the surface of the shuttle from the heat of re-entry into the Earth's atmosphere. One example is Reinforced Carbon-Carbon (RCC), The light gray material which withstands re-entry temperatures up to 1510 °C (2750 °F) and protects the Space Shuttle's wing leading edges and nose cap. RCC is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin. After curing at high temperature in an autoclave, the laminate is pyrolized to convert the resin to carbon, impregnated with furfural alcohol in a vacuum chamber, and cured/pyrolized to convert the furfural alcohol to carbon. In order to provide oxidation resistance for reuse capability, the outer layers of the RCC are converted to silicon carbide.

Other examples can be seen in the "plastic" casings of television sets, cell-phones and so on. These plastic casings are usually a composite material made up of a thermoplastic matrix such as acrylonitrile-butadiene-styrene (ABS) in which calcium carbonate chalk, talc, glass fibers or carbon fibers have been added for added strength, bulk, or electrostatic dispersion. These additions may be referred to as reinforcing fibers, or dispersants, depending on their purpose.

Polymers

Household items made of various kinds of plastic.

Polymers are also an important part of materials science. Polymers are the raw materials (the resins) used to make what we commonly call plastics. Plastics are really the final product, created after one or more polymers or additives have been added to a resin during processing, which is then shaped into a final form. Polymers which have been around, and which are in current widespread use, include polyethylene, polypropylene, PVC, polystyrene, nylons, polyesters, acrylics, polyurethanes, and polycarbonates. Plastics are generally classified as "commodity", "specialty" and "engineering" plastics.

PVC (polyvinyl-chloride) is widely used, inexpensive, and annual production quantities are large. It lends itself to an incredible array of applications, from artificial leather to electrical insulation and cabling, packaging and containers. Its fabrication and processing are simple and well-established. The versatility of PVC is due to the wide range of plasticisers and other additives that it accepts. The term "additives" in polymer science refers to the chemicals and compounds added to the polymer base to modify its material properties.

Polycarbonate would be normally considered an engineering plastic (other examples include PEEK, ABS). Engineering plastics are valued for their superior strengths and other special material properties. They are usually not used for disposable applications, unlike commodity plastics.

Specialty plastics are materials with unique characteristics, such as ultra-high strength, electrical conductivity, electro-fluorescence, high thermal stability, etc.

The dividing lines between the various types of plastics is not based on material but rather on their properties and applications. For instance, polyethylene (PE) is a cheap, low friction polymer commonly used to make disposable shopping bags and trash bags, and is considered a commodity plastic, whereas medium-density polyethylene (MDPE) is used for underground gas and water pipes, and another variety called Ultra-high Molecular Weight Polyethylene UHMWPE is an engineering plastic which is used extensively as the glide rails for industrial equipment and the low-friction socket in implanted hip joints.

Metal alloys

The study of metal alloys is a significant part of materials science. Of all the metallic alloys in use today, the alloys of iron (steel, stainless steel, cast iron, tool steel, alloy steels) make up the largest proportion both by quantity and commercial value. Iron alloyed with various proportions of carbon gives low, mid and high carbon steels. An iron carbon alloy is only considered steel if the carbon level is between 0.01% and 2.00%. For the steels, the hardness and tensile strength of the steel is related to the amount of carbon present, with increasing carbon levels also leading to lower ductility and toughness. Heat treatment processes such as quenching and tempering can significantly change these properties however. Cast Iron is defined as an Iron-Carbon alloy with more than 2.00% but less than 6.67% carbon. Stainless steel is defined as a regular steel alloy with greater than 10% by weight alloying content of Chromium. Nickel and Molybdenum are typically also found in stainless steels.

Other significant metallic alloys are those of aluminium, titanium, copper and magnesium. Copper alloys have been known for a long time (since the Bronze Age), while the alloys of the other three metals have been relatively recently developed. Due to the chemical reactivity of these metals, the electrolytic extraction processes required were only developed relatively recently. The alloys of aluminium, titanium and magnesium are also known and valued for their high strength-to-weight ratios and, in the case of magnesium, their ability to provide electromagnetic shielding. These materials are ideal for situations where high strength-to-weight ratios are more important than bulk cost, such as in the aerospace industry and certain automotive engineering applications.

Overview

  • Biomaterials – materials that are derived from and/or used with biological systems.
  • Crystallography – the study of how atoms in a solid fill space, the defects associated with crystal structures such as grain boundaries and dislocations, and the characterization of these structures and their relation to physical properties.
  • Electronic and magnetic materials – materials such as semiconductors used to create integrated circuits, storage media, sensors, and other devices.
  • Forensic engineering – the study of how products fail, and the vital role of the materials of construction
  • Glass Science – any non-crystalline material including inorganic glasses, vitreous metals and non-oxide glasses.
  • Nanotechnology – rigorously, the study of materials where the effects of quantum confinement, the Gibbs-Thomson effect, or any other effect only present at the nanoscale is the defining property of the material; but more commonly, it is the creation and study of materials whose defining structural properties are anywhere from less than a nanometer to one hundred nanometers in scale, such as molecularly engineered materials.
  • Surface science/Catalysis – interactions and structures between solid-gas solid-liquid or solid-solid interfaces.
  • Textile Reinforced Materials – materials in the form of ceramic or concrete are reinforced with a primarily woven or non-woven textile structure to impose high strength with comparatively more flexibility to withstand vibrations and sudden jerks.

Some practitioners consider rheology a sub-field of materials science, because it can cover any material that flows. However, modern rheology typically deals with non-Newtonian fluid dynamics, so it is often considered a sub-field of continuum mechanics. See also granular material.

  • Tribology – the study of the wear of materials due to friction and other factors.

Primary topics

  • Thermodynamics, statistical mechanics, and physical chemistry, for phase equilibrium conditions, phase diagrams of materials systems (multi-phase, multi-component, reacting and non-reacting systems)
  • Phase transformation kinetics, for the kinetics of phase transformations (with particular emphasis on solid-solid phase transitions)
  • Transport phenomena for the transport of heat, mass, and momentum in materials processing.
  • Crystallography, quantum chemistry or quantum physics, for the structure (symmetry and defects) and bonding in materials (e.g., ionic, metallic, covalent, and van der Waals bonding)
  • Mechanical behavior of materials, to understand the mechanical properties of materials, defects and their propagation, and their behavior under static, dynamic, and cyclic loads
  • Electronic properties of materials, and solid-state physics, for the understanding of the electronic, thermal, magnetic, and optical properties of materials
  • Diffraction and wave mechanics, for the science behind characterization systems, e.g., transmission electron microscopy (TEM)
  • Polymer properties, synthesis, and characterization, for a specialized understanding of how polymers behave, how they are made, and how they are characterized; exciting applications of polymers include liquid crystal displays (LCDs, the displays found in most cell phones, cameras, and iPods), novel photovoltaic devices based on semiconductor polymers (which, unlike the traditional silicon solar panels, are flexible and cheap to manufacture, albeit with lower efficiency), and membranes for room-temperature fuel cells (as proton exchange membranes) and filtration systems in the environmental and biomedical fields
  • Biomaterials, physiology, biomechanics, biochemistry, for a specialized understanding of how materials integrate into biological systems, e.g., through materiomics
  • Semiconductor materials and semiconductor devices, for a specialized understanding of the advanced processes used in industry (e.g. crystal growth techniques, thin-film deposition, ion implantation, photolithography), their properties, and their integration in electronic devices
  • Alloying, corrosion, and thermal or mechanical processing, for a specialized treatment of metallurgical materials—with applications ranging from aerospace and industrial equipment to the civil industries

Professional organizations

See also

Bibliography

  • Ashby, Michael; Hugh Shercliff and David Cebon (2007). Materials: engineering, science, processing and design (1st ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3. 
  • Askeland, Donald R.; Pradeep P. Phulé (2005). The Science & Engineering of Materials (5th ed.). Thomson-Engineering. ISBN 0-534-55396-6. 
  • Callister, Jr., William D. (2000). Materials Science and Engineering - An Introduction (5th ed.). John Wiley and Sons. ISBN 0-471-32013-7. 
  • Eberhart, Mark (2003). Why Things Break: Understanding the World by the Way It Comes Apart. Harmony. ISBN 1-4000-4760-9. 
  • Gaskell, David R. (1995). Introduction to the Thermodynamics of Materials (4th ed.). Taylor and Francis Publishing. ISBN 1-56032-992-0. 
  • Gordon, James Edward (1984). The New Science of Strong Materials or Why You Don't Fall Through the Floor (eissue ed.). Princeton University Press. ISBN 0-691-02380-8. 
  • Mathews, F.L. & Rawlings, R.D. (1999). Composite Materials: Engineering and Science. Boca Raton: CRC Press. ISBN 0-8493-0621-7. 
  • Lewis, P.R., Reynolds, K. & Gagg, C. (2003). Forensic Materials Engineering: Case Studies. Boca Raton: CRC Press. 
  • Wachtman, John B. (1996). Mechanical Properties of Ceramics. New York: Wiley-Interscience, John Wiley & Son's. ISBN 0-471-13316-7. 
  • Walker, P., ed (1993). Chambers Dictionary of Materials Science and Technology. Chambers Publishing. ISBN 055013249X. 

Further reading

  • Timeline of Materials Science at The Minerals, Metals & Materials Society (TMS) - Accessed March 2007
  • Burns, G.; Glazer, A.M. (1990). Space Groups for Scientists and Engineers (2nd ed.). Boston: Academic Press, Inc. ISBN 0-12-145761-3. 
  • Cullity, B.D. (1978). Elements of X-Ray Diffraction (2nd ed.). Reading, Massachusetts: Addison-Wesley Publishing Company. ISBN 0-534-55396-6. 
  • Giacovazzo, C; Monaco HL, Viterbo D, Scordari F, Gilli G, Zanotti G, and Catti M (1992). Fundamentals of Crystallography. Oxford: Oxford University Press. ISBN 0-19-855578-4. 
  • Green, D.J.; Hannink, R.; Swain, M.V. (1989). Transformation Toughening of Ceramics. Boca Raton: CRC Press. ISBN 0-8493-6594-5. 
  • Lovesey, S. W. (1984). Theory of Neutron Scattering from Condensed Matter; Volume 1: Neutron Scattering. Oxford: Clarendon Press. ISBN 0-19-852015-8. 
  • Lovesey, S. W. (1984). Theory of Neutron Scattering from Condensed Matter; Volume 2: Condensed Matter. Oxford: Clarendon Press. ISBN 0-19-852017-4. 
  • O'Keeffe, M.; Hyde, B.G. (1996). Crystal Structures; I. Patterns and Symmetry. Washington, DC: Mineralogical Society of America, Monograph Series. ISBN 0-939950-40-5. 
  • Squires, G.L. (1996). Introduction to the Theory of Thermal Neutron Scattering (2nd ed.). Mineola, New York: Dover Publications Inc. ISBN 0-486-69447-X. 
  • Young, R.A., ed (1993). The Rietveld Method. Oxford: Oxford University Press & International Union of Crystallography. ISBN 0-19-855577-6. 

References

  1. ^ Callister, William (2007). Materials Science and Engineering - An Introduction. United States of America: John Wiley & Sons, Inc.. pp. 5–13. ISBN 978-0-471-73696-7. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • materials science — n. a multidisciplinary science that studies manufacturing materials, esp. high tech alloys, ceramics, and plastics materials scientist n …   English World dictionary

  • materials science — the study of the characteristics and uses of various materials, as glass, plastics, and metals. [1960 65] * * * Study of the properties of solid materials and how those properties are determined by the material s composition and structure, both… …   Universalium

  • materials science — noun : the scientific study of the properties and applications of materials of construction or manufacture (as ceramics, polymers, metals, or composites) • materials scientist noun * * * the study of the characteristics and uses of various… …   Useful english dictionary

  • Materials Science and Engineering R —   Abbreviated title (ISO) …   Wikipedia

  • Materials Science and Engineering Reports —   Titre abrégé Mater. Sci. Eng., R Discipline Science des matériaux Langue Angla …   Wikipédia en Français

  • Materials science in science fiction — Material science in science fiction is the study of how materials science is portrayed in works of science fiction. The accuracy of the materials science portrayed spans a wide range – sometimes it is an extrapolation of existing technology,… …   Wikipedia

  • Materials Science Citation Index — The Materials Science Citation Index is a citation index, established in 1992, by Thomson ISI (Thomson Reuters). Its overall focus is cited reference searching of the notable and significant journal literature in materials science. The database… …   Wikipedia

  • Materials Science Laboratory — MSRR 1 (NASA) The Materials Science Laboratory (MSL) of the European Space Agency is a payload on board the International Space Station for materials science experiments in low gravity. It is installed in NASA s first Materials Science Research… …   Wikipedia

  • Materials Science & Technology — Logo der Empa Eidgenössische Hochschulen und Forschungsanstalten Budget 2008 (SFr. Mio.) ETH Bereich 1 939,0 Hochschulen …   Deutsch Wikipedia

  • Materials Science Laboratory — MSRR 1 (NASA) Das Materials Science Laboratory (MSL) ist ein Experiment der Europäischen Weltraumorganisation an Bord der Internationalen Raumstation. Es wurde im August 2009 im Rahmen der STS 128 Mission mit dem Space Shuttle Discovery gestartet …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”