- Automation
Automation (
ancient Greek : = "self dictated"), "'roboticization" or industrial automation ornumerical control is the use ofcontrol system s such ascomputer s to control industrialmachinery and processes, reducing the need for human intervention. [cite web
url=http://dictionary.reference.com/browse/Automation
title=Automation - Definitions from Dictionary.com
publisher=dictionary.reference.com
accessdate=2008-04-22
last=
first=] In the scope ofindustrialization , automation is a step beyondmechanization . Whereas "mechanization" provided human operators with machinery to assist them with the "physical" requirements of work, "automation" greatly reduces the need for human "sensory" and "mental" requirements as well. Processes and systems can also be automated.Automation plays an increasingly important role in the
global economy and in daily experience. Engineers strive to combine automated devices with mathematical and organizational tools to create complex systems for a rapidly expanding range of applications and human activities.Many roles for humans in industrial processes presently lie beyond the scope of automation. Human-level
pattern recognition ,language recognition , and language production ability are well beyond the capabilities of modern mechanical and computer systems. Tasks requiring subjective assessment or synthesis of complex sensory data, such as scents and sounds, as well as high-level tasks such as strategic planning, currently require human expertise. In many cases, the use of humans is more cost-effective than mechanical approaches even where automation of industrial tasks is possible.Specialised hardened computers, referred to as
programmable logic controller s (PLCs), are frequently used to synchronize the flow of inputs from (physical)sensor s and events with the flow of outputs to actuators and events. This leads to precisely controlled actions that permit a tight control of almost anyindustrial process .Human-machine interfaces (HMI) or computer human interfaces (CHI), formerly known as "man-machine interfaces", are usually employed to communicate with PLCs and other computers, such as entering and monitoring temperatures or pressures for further automated control or emergency response. Service personnel who monitor and control these interfaces are often referred to as stationary engineers. [ [http://www.bls.gov/oco/ocos228.htm Stationary Engineers and Boiler Operators ] ]
ocial impact
Automation has had a notable impact in a wide range of highly visible industries beyond manufacturing. Once-ubiquitous
telephone operator s have been replaced largely by automatedtelephone switchboard s and answering machines. Medical processes such as primary screening inelectrocardiography orradiography and laboratory analysis of humangenes , sera, cells, and tissues are carried out at much greater speed and accuracy by automated systems.Automated teller machine s have reduced the need for bank visits to obtain cash and carry out transactions. In general, automation has been responsible for the shift in the world economy from agrarian to industrial in the 19th century and from industrial to services in the 20th century. [ [http://www.boston.com/bostonworks/galleries/30fast_declining_occupations?pg=10 30 of the fastest declining occupations - Boston.com ] ]The widespread impact of industrial automation raises social issues, among them its impact on
employment . Historical concerns about the effects of automation date back to the beginning of the industrial revolution, when a social movement of English textilemachine operator s in the early 1800s known as theLuddites protested against Jacquard's automated weaving looms [ [http://www.spartacus.schoolnet.co.uk/PRluddites.htm The Luddites ] ] — often by destroying such textile machines— that they felt threatened their jobs. One author made the following case. When automation was first introduced, it caused widespread fear. It was thought that the displacement of humanoperator s by computerized systems would lead to severeunemployment .Critics of automation contend that increased industrial automation causes increased unemployment; this was a pressing concern during the 1980s. One argument claims that this has happened invisibly in recent years, as the fact that many manufacturing jobs left the United States during the early 1990s was offset by a one-time massive increase in IT jobs at the same time. Some authors argue that the opposite has often been true, and that automation has led to "higher" employment. Under this point of view, the freeing up of the labour force has allowed more people to enter higher skilled managerial as well as specialised consultant/contractor jobs (like
cryptographer s), which are typically higher paying. One odd side effect of this shift is that "unskilled labour" is in higher demand in manyfirst-world nations, because fewer people are available to fill such jobs.At first glance, automation might appear to devalue labor through its replacement with less-expensive machines; however, the overall effect of this on the workforce as a whole remains unclear. Today automation of the workforce is quite advanced, and continues to advance increasingly more rapidly throughout the world and is encroaching on ever more skilled jobs, yet during the same period the general well-being and quality of life of most people in the world (where political factors have not muddied the picture) have improved dramatically. What role automation has played in these changes has not been well studied.
Current emphasis
Currently, for manufacturing companies, the purpose of automation has shifted from increasing productivity and reducing costs, to broader issues, such as increasing quality and flexibility in the manufacturing process.
The old focus on using automation simply to increase productivity and reduce costs was seen to be short-sighted, because it is also necessary to provide a skilled workforce who can make repairs and manage the machinery. Moreover, the initial costs of automation were high and often could not be recovered by the time entirely new manufacturing processes replaced the old. (Japan's "robot junkyards" were once world famous in the manufacturing industry.)
Automation is now often applied primarily to increase quality in the manufacturing process, where automation can increase quality substantially. For example, automobile and truck
piston s used to be installed into engines manually. This is rapidly being transitioned to automated machine installation, because the error rate for manual installment was around 1-1.5%, but has been reduced to 0.00001% with automation. Hazardous operations, such asoil refining , the manufacturing of industrial chemicals, and all forms ofmetal working , were always early contenders for automation.Another major shift in automation is the increased emphasis on flexibility and convertibility in the manufacturing process. Manufacturers are increasingly demanding the ability to easily switch from manufacturing Product A to manufacturing Product B without having to completely rebuild the
production line s. Flexibility and distributed processes have led to the introduction ofAutomated Guided Vehicle s with Natural Features Navigation.Automation tools
Different types of automation tools exist:
* ANN -
Artificial neural network
* DCS -Distributed Control System
* HMI -Human Machine Interface
* SCADA -Supervisory Control and Data Acquisition
* PLC -Programmable Logic Controller See also
*Artificial intelligence
*BELBIC
* Controller
*Cybernetics
*Hardware architect
*Hardware architecture
*Industrial Engineering
*Machine to Machine
*OLE for process control
*OPC Foundation
*Process control
*Retraining
*Run Book Automation (RBA)
*Robot
*Systems architect
*Systems architecture
*Odo J. Struger References
Further reading
*
Jeremy Rifkin : The End of Work: The Decline of the Global Labor Force and the Dawn of the Post-Market Era
* Ramin Ramtin: "Capitalism and Automation - Revolution in Technology and Capitalist Breakdown". Pluto Press, London, Concord Mass. 1991External links
* [http://goldberg.berkeley.edu/t-ase/ IEEE Transactions on Automation Science and Engineering]
Wikimedia Foundation. 2010.