Chemical industry

Chemical industry
Oil refinery in Louisiana - an example of chemical industry

The chemical industry comprises the companies that produce industrial chemicals. Central to the modern world economy, it converts raw materials (oil, natural gas, air, water, metals, and minerals) into more than 70,000 different products.



Polymers and plastics, especially polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polystyrene and polycarbonate comprise about 80% of the industry’s output worldwide.[citation needed] Chemicals are used to make a wide variety of consumer goods, as well as thousands inputs to agriculture, manufacturing, construction, and service industries. The chemical industry itself consumes 26 percent of its own output.[citation needed] Major industrial customers include rubber and plastic products, textiles, apparel, petroleum refining, pulp and paper, and primary metals. Chemicals is nearly a $3 trillion global enterprise, and the EU and U.S. chemical companies are the world's largest producers.[citation needed]

Product category breakdown

1928 《Future war and the German chemical industry》

Sales of the chemical business can be divided into a few broad categories, including basic chemicals (about 35 to 37 percent of the dollar output), life sciences (30 percent), specialty chemicals (20 to 25 percent) and consumer products (about 10 percent).[citation needed]

Basic chemicals

Basic chemicals, or "commodity chemicals" are a broad chemical category including polymers, bulk petrochemicals and intermediates, other derivatives and basic industrials, inorganic chemicals, and fertilizers. Typical growth rates for basic chemicals are about 0.5 to 0.7 times GDP.[citation needed] Product prices are generally less than fifty cents per pound.[citation needed]

Polymers, the largest revenue segment at about 33 percent of the basic chemicals dollar value, includes all categories of plastics and man-made fibers.[citation needed] The major markets for plastics are packaging, followed by home construction, containers, appliances, pipe, transportation, toys, and games.

  • The largest-volume polymer product, polyethylene (PE), is used mainly in packaging films and other markets such as milk bottles, containers, and pipe.
  • Polyvinyl chloride (PVC), another large-volume product, is principally used to make pipe for construction markets as well as siding and, to a much smaller extent, transportation and packaging materials.
  • Polypropylene (PP), similar in volume to PVC, is used in markets ranging from packaging, appliances, and containers to clothing and carpeting.
  • Polystyrene (PS), another large-volume plastic, is used principally for appliances and packaging as well as toys and recreation.
  • The leading man-made fibers include polyester, nylon, polypropylene, and acrylics, with applications including apparel, home furnishings, and other industrial and consumer use.

The principal raw materials for polymers are bulk petrochemicals.[citation needed]

Chemicals in the bulk petrochemicals and intermediates are primarily made from liquefied petroleum gas (LPG), natural gas, and crude oil. Their sales volume is close to 30 percent of overall basic chemicals.[citation needed] Typical large-volume products include ethylene, propylene, benzene, toluene, xylenes, methanol, vinyl chloride monomer (VCM), styrene, butadiene, and ethylene oxide. These chemicals are the starting points for most polymers and other organic chemicals as well as much of the specialty chemicals category.

Other derivatives and basic industrials include synthetic rubber, surfactants, dyes and pigments, turpentine, resins, carbon black, explosives, and rubber products and contribute about 20 percent of the basic chemicals' external sales.

Inorganic chemicals (about 12 percent of the revenue output) make up the oldest of the chemical categories. Products include salt, chlorine, caustic soda, soda ash, acids (such as nitric acid, phosphoric acid, and sulfuric acid), titanium dioxide, and hydrogen peroxide.

Fertilizers are the smallest category (about 6 percent) and include phosphates, ammonia, and potash chemicals.

Life sciences

Life sciences (about 30 percent of the dollar output of the chemistry business) include differentiated chemical and biological substances, pharmaceuticals, diagnostics, animal health products, vitamins, and pesticides. While much smaller in volume than other chemical sectors, their products tend to have very high prices—over ten dollars per pound—growth rates of 1.5 to 6 times GDP, and research and development spending at 15 to 25 percent of sales. Life science products are usually produced with very high specifications and are closely scrutinized by government agencies such as the Food and Drug Administration. Pesticides, also called "crop protection chemicals", are about 10 percent of this category and include herbicides, insecticides, and fungicides.[citation needed]

Specialty chemicals

Specialty chemicals are a category of relatively high valued, rapidly growing chemicals with diverse end product markets. Typical growth rates are one to three times GDP with prices over a dollar per pound. They are generally characterized by their innovative aspects. Products are sold for what they can do rather than for what chemicals they contain. Products include electronic chemicals, industrial gases, adhesives and sealants as well as coatings, industrial and institutional cleaning chemicals, and catalysts. Coatings make up about 15 percent of specialty chemicals sales, with other products ranging from 10 to 13 percent.[citation needed] Specialty Chemicals are sometimes referred to as "fine chemicals"

Consumer products

Consumer products include direct product sale of chemicals such as soaps, detergents, and cosmetics. Typical growth rates are 0.8 to 1.0 times GDP.

Every year, the American Chemistry Council tabulates the U.S. production volume of the top 100 basic chemicals. In 2000, the aggregate production volume of the top 100 chemicals totalled 502 million tons, up from 397 million tons in 1990. Inorganic chemicals tend to be the largest volume, though much smaller in dollar revenue terms due to their low prices. The top 11 of the 100 chemicals in 2000 were sulfuric acid (44 million tons), nitrogen (34), ethylene (28), oxygen (27), lime (22), ammonia (17), propylene (16), polyethylene (15), chlorine (13), phosphoric acid (13) and diammonium phosphates (12).


The largest corporate producers worldwide, each with plants in numerous countries, include BASF, Bayer, Braskem, Celanese/Ticona, Degussa, Dow, DuPont, Eastman Chemical Company, ExxonMobil, INEOS, Mitsubishi, PPG Industries, SABIC and Shell, along with thousands of smaller firms.

In the U.S. there are 170 major chemical companies.[citation needed] They operate internationally with more than 2,800 facilities outside the U.S. and 1,700 foreign subsidiaries or affiliates operating. The U.S. chemical output is $400 billion a year. The U.S. industry records large trade surpluses and employs more than a million people in the United States alone. The chemical industry is also the second largest consumer of energy in manufacturing and spends over $5 billion annually on pollution abatement.

In Europe, especially Germany, the chemical, plastics and rubber sectors are among the largest industrial sectors.[citation needed] Together they generate about 3.2 million jobs in more than 60,000 companies. Since 2000 the chemical sector alone has represented 2/3 of the entire manufacturing trade surplus of the EU. The chemical sector accounts for 12% of the EU manufacturing industry's added value.

The chemical industry has shown rapid growth for more than fifty years.[citation needed] The fastest-growing areas have involved the manufacture of synthetic organic polymers used as plastics, fibres and elastomers. Historically and presently the chemical industry has been concentrated in three areas of the world, Western Europe, North America and Japan (the Triad). The European Community remains the largest producer area followed by the USA and Japan.

The traditional dominance of chemical production by the Triad countries is being challenged by changes in feedstock availability and price, labour cost, energy cost, differential rates of economic growth and environmental pressures. Instrumental in the changing structure of the global chemical industry has been the growth in China, India, Korea, the Middle East, South East Asia, Nigeria, and Brazil.


This is a process diagram of a turbine generator. Knowing how to design a sustainable process in which the system can withstand or manipulate process halting conditions such as; heat, fiction, pressure, emissions, contaminants, is essential for engineers working to produce a sustainable process for use in the chemical industry.

As accepted by chemical engineers, the chemical industry involves the use of chemical processes such as chemical reactions and refining methods to produce a wide variety of solid, liquid, and gaseous materials. Most of these products are used in manufacture of other items, although a smaller number are used directly by consumers. Solvents, pesticides, lye, washing soda, and portland cement are a few examples of product used by consumers.

The industry includes manufacturers of inorganic- and organic-industrial chemicals, ceramic products, petrochemicals, agrochemicals, polymers and rubber (elastomers), oleochemicals (oils, fats, and waxes), explosives, fragrances and flavors. Examples of these products are shown in the Table below.

The novel chemical reactor reduces the amount of solvents used from 1000 litres to just 4 litres.
Product Type Examples
inorganic industrial ammonia, nitrogen, sodium hydroxide, sulfuric acid, nitric acid
organic industrial acrylonitrile, phenol, ethylene oxide, urea
ceramic products silica brick, frit
petrochemicals ethylene, propylene, benzene, styrene
agrochemicals fertilizers, insecticides, herbicides
polymers polyethylene, Bakelite, polyester
elastomers polyisoprene, neoprene, polyurethane
oleochemicals lard, soybean oil, stearic acid
explosives nitroglycerin, ammonium nitrate, nitrocellulose
fragrances and flavors benzyl benzoate, coumarin, vanillin

Although the pharmaceutical industry is often considered[who?] a chemical industry , it has many different characteristics that puts it in a separate category. Other closely related industries include petroleum, glass, paint, ink, sealant, adhesive, and food processing manufacturers.

Chemical processes such as chemical reactions are used in chemical plants to form new substances in various types of reaction vessels. In many cases the reactions are conducted in special corrosion resistant equipment at elevated temperatures and pressures with the use of catalysts. The products of these reactions are separated using a variety of techniques including distillation especially fractional distillation, precipitation, crystallization, adsorption, filtration, sublimation, and drying.

The processes and product or products are usually tested during and after manufacture by dedicated instruments and on-site quality control laboratories to ensure safe operation and to assure that the product will meet required specifications. The products are packaged and delivered by many methods, including pipelines, tank-cars, and tank-trucks (for both solids and liquids), cylinders, drums, bottles, and boxes. Chemical companies often have a research and development laboratory for developing and testing products and processes. These facilities may include pilot plants, and such research facilities may be located at a site separate from the production plant(s).


Chandler (2005) argues the relative success or failure of American and European chemical companies is explained with reference to three themes: "barriers to entry," "strategic boundaries," and "limits to growth." He says successful chemical firms followed definite "paths of learning" whereby first movers and close followers created entry barriers to would-be rivals by building "integrated learning bases" (or organizational capabilities) which enabled them to develop, produce, distribute, and sell in local and then worldwide markets. Also they followed a "virtuous strategy" of reinvestment of retained earnings and growth through diversification, particularly to utilize "dynamic" scale and scope economies relating to new learning in launching "next generation" products.

Companies in the 21st century

The chemical industry includes large, medium, and small companies located worldwide. Companies with sales of chemical products greater than $10 billion dollars in fiscal year 2007 appear listed below. For some of these companies the chemical sales might represent only a portion of their total sales; (for example ExxonMobil's chemical sales covered only 8.7 percent of their total sales in 2005).

COMPANY, HEADQUARTERS 2007 Chemical Sales, billions[1] Rank Country
BASF SE, Ludwigshafen, Germany $65.3 1 Germany
Dow Chemical, Midland, Michigan, USA $53.5 2 United States
INEOS, Lyndhurst, UK $43.6 3 United Kingdom
LyondellBasell, Houston, Texas, USA $42.8 4 United States
Formosa Plastics, Taiwan $31.9 5 Republic of China
DuPont, Wilmington, Delaware, USA $28.5 6 United States
Saudi Basic Industries Corporation, Riyadh, Saudi Arabia $26.4 7 Saudi Arabia
Bayer, AG, Leverkusen, Germany $24.2 8 Germany
Mitsubishi Chemical, Tokyo, Japan $22.2 9 Japan
Akzo Nobel/Imperial Chemical Industries(ICI), Amsterdam/London $19.9 10 NetherlandsUnited Kingdom
Air Liquide, Paris, France $16.3 11 France
Sumitomo Chemical, Tokyo, Japan $15.2 12 Japan
Evonik Industries, AG, Essen, Germany $15.0 13 Germany
Mitsui Chemicals, Tokyo, Japan $14.3 14 Japan
Asahi Kasei, Tokyo, Japan $13.8 15 Japan
Toray Industries, Tokyo, Japan $13.1 16 Japan
Chevron Phillips, The Woodlands, Texas, USA $12.5 17 United States
DSM NV, Heerlen, Netherlands $12.1 18 Netherlands
PPG Industries, Pittsburgh, Pennsylvania, USA $11.2 19 United States
Shin-Etsu Chemical Co., Ltd., Tokyo, Japan $11.1 20 Japan

Just as companies emerge as the main producers of the chemical industry, we can also look on a more global scale to how industrialized countries rank, with regards to the billions of dollars worth of production a country or region could export. Though the business of chemistry is worldwide in scope, the bulk of the world’s $3.7 trillion chemical output is accounted for by only a handful of industrialized nations. The United States alone produced $689 billion, 18.6 percent of the total world chemical output in 2008.[2]

Global Chemical Shipments by Country/Region (billions of dollars)[2] 1998 1999 2000 2001 2002 2003 2004 2005 2006 2008 2009
United States of America 416.7 420.3 449.2 438.4 462.5 487.7 540.9 610.9 657.7 664.1 689.3
Canada 21.1 21.8 25.0 24.8 25.8 30.5 36.2 40.2 43.7 45.4 47.4
Mexico 19.1 21.0 23.8 24.4 24.3 23.5 25.6 29.2 32.0 33.4 37.8
North America 456.9 463.1 498.0 487.6 512.6 541.7 602.7 680.3 733.4 742.8 774.6
Brazil 46.5 40.0 45.7 41.5 39.6 47.4 60.2 71.1 82.8 96.4 126.7
Other 59.2 58.1 60.8 63.4 58.6 62.9 69.9 77.2 84.6 89.5 102.1
Latin America 105.7 98.1 106.5 104.9 98.2 110.3 130.0 148.3 167.4 185.9 228.8
France 79.1 78.5 76.5 76.8 80.5 99.6 111.1 117.5 121.3 138.4 158.9
Germany 124.9 123.2 118.9 116.1 120.1 148.1 168.6 178.6 192.5 229.5 263.2
Italy 63.9 64.6 59.5 58.6 64.5 75.8 86.6 89.8 95.3 105.9 122.9
United Kingdom 70.3 70.1 66.8 66.4 69.9 77.3 91.3 95.2 107.8 118.2 123.4
Belgium 27.1 27.0 27.5 27.1 28.7 36.1 41.8 43.5 46.9 51.6 62.6
Ireland 16.9 20.1 22.6 22.9 29.1 32.3 33.9 34.9 37.5 46.0 54.8
Netherlands 29.7 29.4 31.3 30.6 32.2 40.1 49.0 52.7 59.2 67.9 81.7
Spain 31.0 30.8 30.8 31.9 33.4 42.0 48.9 52.7 56.7 63.7 74.8
Sweden 11.1 11.4 11.2 11.0 12.5 15.9 18.2 19.3 21.2 21.2 22.6
Switzerland 22.1 22.2 19.4 21.1 25.5 30.3 33.8 35.4 37.8 42.7 53.1
Other 27.1 26.8 25.9 26.4 27.9 33.5 38.6 42.9 46.2 50.3 58.9
Western Europe 503.1 504.0 490.4 488.8 524.4 630.9 721.9 762.7 822.4 935.4 1,076.8
Russia 23.8 24.6 27.4 29.1 30.3 33.4 37.5 40.9 53.1 63.0 77.6
Other 22.3 20.3 21.9 23.4 25.3 31.4 39.6 46.2 55.0 68.4 87.5
Central/Eastern Europe 46.1 44.9 49.3 52.5 55.6 64.8 77.1 87.1 108.0 131.3 165.1
Africa & Middle East 52.7 53.2 59.2 57.4 60.4 73.0 86.4 99.3 109.6 124.2 160.4
Japan 193.8 220.4 239.7 208.3 197.2 218.8 243.6 251.3 248.5 245.4 298.0
Asia-Pacific excluding Japan 215.2 241.9 276.1 271.5 300.5 369.1 463.9 567.5 668.8 795.5 993.2
China 80.9 87.8 103.6 111.0 126.5 159.9 205.0 269.0 331.4 406.4 549.4
India 30.7 35.3 35.3 32.5 33.5 40.8 53.3 63.6 72.5 91.1 98.2
Australia 11.3 12.1 11.2 10.8 11.3 14.9 17.0 18.7 19.1 22.8 27.1
Korea 39.3 45.5 56.3 50.4 54.9 64.4 78.7 91.9 103.4 116.7 133.2
Singapore 6.3 8.5 9.5 9.4 12.5 16.1 20.0 22.0 25.8 28.9 31.6
Taiwan 21.9 23.7 29.2 26.8 28.4 34.3 44.5 49.5 53.8 57.4 62.9
Other Asia/Pacific 24.8 29.1 30.9 30.8 33.3 38.8 45.5 52.9 62.9 72.2 90.8
Asia/Pacific 409.0 462.3 515.7 479.7 497.7 587.8 707.5 818.8 917.3 1041.0 1291.2
Total world shipments 1573.5 1625.5 1719.0 1670.9 1748.8 2008.5 2325.6 2596.4 2858.1 3160.7 3696.8

See also


  • Fred Aftalion A History of the International Chemical Industry. University of Pennsylvania Press. 1991. online version
  • E. N. Brandt. Growth Company: Dow Chemical's First Century. Michigan State University Press. xxii+ 650 pp. Appendices, Select bibliography and index. ISBN 0-87013-426-4. online review
  • Alfred D. Chandler. Shaping the Industrial Century: The Remarkable Story of the Evolution of the Modern Chemical and Pharmaceutical Industries. Harvard University Press, 2005. 366 pp. ISBN 0-674-01720-X. chapters 3-6 deal with DuPont, Dow Chemicals, Monsanto, American Cyanamid, Union Carbide, and Allied in USA; and European chemical producers, Bayer, Farben, and ICI.
  • Micheal McCoy, et al., "Facts & Figures of the Chemical Industry", Chemical & Engineering News, 84(29), July 10, 2006, pp. 35–72.
  • Shreve, R. Norris, and Joseph A. Brink Jr. The Chemical Process Industries. 4th ed. New York: McGraw Hill, 1977.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • chemical industry — Introduction       complex of processes, operations, and organizations engaged in the manufacture of chemicals and their derivatives.       Although the chemical industry may be described simply as the industry that uses chemistry and… …   Universalium

  • chemical industry — chemijos pramonė statusas T sritis chemija apibrėžtis Pramonės šaka, kurios gamyba pagrįsta cheminėmis reakcijomis. atitikmenys: angl. chemical industry rus. химическая промышленность …   Chemijos terminų aiškinamasis žodynas

  • chemical industry — noun the manufacturers of chemicals considered collectively • Hypernyms: ↑industry …   Useful english dictionary

  • Society of Chemical Industry — The Society of Chemical Industry (SCI) is a learned society set up in 1881 to further the application of chemistry and related sciences for the public benefit .[1] Its purpose is Promoting the commercial application of science for the benefit of… …   Wikipedia

  • Heavy-Chemical Industry Drive — The Heavy Chemical Industry Drive (usually shortened to HCI ) was an economic development plan enacted in the 1970s under the regime of South Korean dictator Park Chung Hee.BackgroundDuring the 1960s, the Republic of Korea had experienced rapid… …   Wikipedia

  • Norwegian Union of Chemical Industry Workers — NKIF Full name Norwegian Union of Chemical Industry Workers Native name Norsk Kjemisk Industriarbeiderforbund Members 32,000 Country …   Wikipedia

  • Mechanical and Chemical Industry Corporation (Turkey) — The Mechanical and Chemical Industry Corporation (Turkish: Makina ve Kimya Endüstrisi Kurumu or MKEK or shortly Makina Kimya), established in 1950, is a reorganization of government controlled group of factories in Turkey that supplied the… …   Wikipedia

  • Shaanxi Coal and Chemical Industry Group — is one coal company in China,its revenue in 2007 is about 15 billions RMB.External links* [ Official Site] …   Wikipedia

  • chemical engineering — chemical engineer. the science or profession of applying chemistry to industrial processes. [1900 05] * * * Academic discipline and industrial activity concerned with developing processes and designing and operating plants to change materials… …   Universalium

  • Chemical engineer — Chemical engineers design, construct and operate plants Part of Chemical engineering History …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”