Nanomaterials

Nanomaterials

Part of a series of articles on

Nanomaterials

Fullerenes

Carbon nanotubes
Buckminsterfullerene
Fullerene chemistry
Applications
In popular culture
Timeline
Carbon allotropes

Nanoparticles

Quantum dots
Nanostructures
Colloidal gold
Silver nanoparticles
Iron nanoparticles
Platinum nanoparticles

See also
Nanotechnology
v · d · e

Nanomaterials is a field that takes a materials science-based approach to nanotechnology. It studies materials with morphological features on the nanoscale, and especially those that have special properties stemming from their nanoscale dimensions. Nanoscale is usually defined as smaller than a one tenth of a micrometer in at least one dimension,[1] though this term is sometimes also used for materials smaller than one micrometer.

On 18 October 2011, the European Commission adopted the following definition of a nanomaterial:[2]

A natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm – 100 nm. In specific cases and where warranted by concerns for the environment, health, safety or competitiveness the number size distribution threshold of 50% may be replaced by a threshold between 1 and 50%.

An important aspect of nanotechnology is the vastly increased ratio of surface area to volume present in many nanoscale materials, which makes possible new quantum mechanical effects. One example is the “quantum size effect” where the electronic properties of solids are altered with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, it becomes pronounced when the nanometer size range is reached. A certain number of physical properties also alter with the change from macroscopic systems. Novel mechanical properties of nanomaterials is a subject of nanomechanics research. Catalytic activities also reveal new behaviour in the interaction with biomaterials.

Contents

Uniformity

The chemical processing and synthesis of high performance technological components for the private, industrial and military sectors requires the use of high purity ceramics, polymers, glass-ceramics and material composites. In condensed bodies formed from fine powders, the irregular sizes and shapes of nanoparticles in a typical powder often lead to non-uniform packing morphologies that result in packing density variations in the powder compact.

Uncontrolled agglomeration of powders due to attractive van der Waals forces can also give rise to in microstructural inhomogeneities. Differential stresses that develop as a result of non-uniform drying shrinkage are directly related to the rate at which the solvent can be removed, and thus highly dependent upon the distribution of porosity. Such stresses have been associated with a plastic-to-brittle transition in consolidated bodies, and can yield to crack propagation in the unfired body if not relieved.[3][4] [5]

In addition, any fluctuations in packing density in the compact as it is prepared for the kiln are often amplified during the sintering process, yielding inhomogeneous densification. Some pores and other structural defects associated with density variations have been shown to play a detrimental role in the sintering process by growing and thus limiting end-point densities. Differential stresses arising from inhomogeneous densification have also been shown to result in the propagation of internal cracks, thus becoming the strength-controlling flaws. [6] [7] [8]

It would therefore appear desirable to process a material in such a way that it is physically uniform with regard to the distribution of components and porosity, rather than using particle size distributions which will maximize the green density. The containment of a uniformly dispersed assembly of strongly interacting particles in suspension requires total control over particle-particle interactions. It should be noted here that a number of dispersants such as ammonium citrate (aqueous) and imidazoline or oleyl alcohol (nonaqueous) are promising solutions as possible additives for enhanced dispersion and deagglomeration. Monodisperse nanoparticles and colloids provide this potential.[9]

Monodisperse powders of colloidal silica, for example, may therefore be stabilized sufficiently to ensure a high degree of order in the colloidal crystal or polycrystalline colloidal solid which results from aggregation. The degree of order appears to be limited by the time and space allowed for longer-range correlations to be established. Such defective polycrystalline colloidal structures would appear to be the basic elements of sub-micrometer colloidal materials science, and, therefore, provide the first step in developing a more rigorous understanding of the mechanisms involved in microstructural evolution in high performance materials and components. [10][11]

Classification

Materials referred to as "nanomaterials" generally fall into two categories: fullerenes, and inorganic nanoparticles. See also Nanomaterials in List of nanotechnology topics

Fullerenes

Rotating view of Buckminsterfullerene C60

The fullerenes are a class of allotropes of carbon which conceptually are graphene sheets rolled into tubes or spheres. These include the carbon nanotubes (or silicon nanotubes) which are of interest both because of their mechanical strength and also because of their electrical properties.

For the past decade, the chemical and physical properties of fullerenes have been a hot topic in the field of research and development, and are likely to continue to be for a long time. In April 2003, fullerenes were under study for potential medicinal use: binding specific antibiotics to the structure of resistant bacteria and even target certain types of cancer cells such as melanoma. The October 2005 issue of Chemistry and Biology contains an article describing the use of fullerenes as light-activated antimicrobial agents. In the field of nanotechnology, heat resistance and superconductivity are among the properties attracting intense research.

A common method used to produce fullerenes is to send a large current between two nearby graphite electrodes in an inert atmosphere. The resulting carbon plasma arc between the electrodes cools into sooty residue from which many fullerenes can be isolated.

There are many calculations that have been done using ab-initio Quantum Methods applied to fullerenes. By DFT and TDDFT methods one can obtain IR, Raman and UV spectra. Results of such calculations can be compared with experimental results.

Nanoparticles

Nanoparticles or nanocrystals made of metals, semiconductors, or oxides are of particular interest for their mechanical, electrical, magnetic, optical, chemical and other properties. Nanoparticles have been used as quantum dots and as chemical catalysts.

Nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic or molecular structures. A bulk material should have constant physical properties regardless of its size, but at the nano-scale this is often not the case. Size-dependent properties are observed such as quantum confinement in semiconductor particles, surface plasmon resonance in some metal particles and superparamagnetism in magnetic materials.

Nanoparticles exhibit a number of special properties relative to bulk material. For example, the bending of bulk copper (wire, ribbon, etc.) occurs with movement of copper atoms/clusters at about the 50 nm scale. Copper nanoparticles smaller than 50 nm are considered super hard materials that do not exhibit the same malleability and ductility as bulk copper. The change in properties is not always desirable. Ferroelectric materials smaller than 10 nm can switch their magnetisation direction using room temperature thermal energy, thus making them useless for memory storage. Suspensions of nanoparticles are possible because the interaction of the particle surface with the solvent is strong enough to overcome differences in density, which usually result in a material either sinking or floating in a liquid. Nanoparticles often have unexpected visual properties because they are small enough to confine their electrons and produce quantum effects. For example gold nanoparticles appear deep red to black in solution.

The often very high surface area to volume ratio of nanoparticles provides a tremendous driving force for diffusion, especially at elevated temperatures. Sintering is possible at lower temperatures and over shorter durations than for larger particles. This theoretically does not affect the density of the final product, though flow difficulties and the tendency of nanoparticles to agglomerate do complicate matters. The surface effects of nanoparticles also reduces the incipient melting temperature.

Sol-gel

The sol-gel process is a wet-chemical technique commonly used to synthesise a wide variety of nanomaterials.

Characterization

The first observations and size measurements of nano-particles were made during the first decade of the 20th century. They are mostly associated with the name of Zsigmondy who made detailed studies of gold sols and other nanomaterials with sizes down to 10 nm and less. He published a book in 1914.[12] He used an ultramicroscope that employs a dark field method for seeing particles with sizes much less than light wavelength.

There are traditional techniques developed during 20th century in Interface and Colloid Science for characterizing nanomaterials. These are widely used for first generation passive nanomaterials specified in the next section.

These methods include several different techniques for characterizing particle size distribution. This characterization is imperative because many materials that are expected to be nano-sized are actually aggregated in solutions. Some of methods are based on light scattering. Other apply ultrasound, such as ultrasound attenuation spectroscopy for testing concentrated nano-dispersions and microemulsions.[13]

There is also a group of traditional techniques for characterizing surface charge or zeta potential of nano-particles in solutions. This information is required for proper system stabilzation, preventing its aggregation or flocculation. These methods include microelectrophoresis, electrophoretic light scattering and electroacoustics. The last one, for instance colloid vibration current method is suitable for characterizing concentrated systems.

Safety

Nanomaterials behave differently than other similarly-sized particles. It is therefore necessary to develop specialized approaches to testing and monitoring their effects on human health and on the environment. The OECD Chemicals Committee has established the Working Party on Manufactured Nanomaterials to address this issue and to study the practices of OECD member countries in regards to nanomaterial safety.[14]

While nanomaterials and nanotechnologies are expected to yield numerous health and health care advances, such as more targeted methods of delivering drugs, new cancer therapies, and methods of early detection of diseases, they also may have unwanted effects.[15] Increased rate of absorption is the main concern associated with manufactured nanoparticles.

When materials are made into nanoparticles, their surface area to volume ratio increases. The greater specific surface area (surface area per unit weight) may lead to increased rate of absorption through the skin, lungs, or digestive tract and may cause unwanted effects to the lungs as well as other organs. However, the particles must be absorbed in sufficient quantities in order to pose health risks.[15]

As the use of nanomaterials increases worldwide, concerns for worker and user safety are mounting. To address such concerns, the Swedish Karolinska Institute conducted a study in which various nanoparticles were introduced to human lung epithelial cells. The results, released in 2008, showed that iron oxide nanoparticles caused little DNA damage and were non-toxic. Zinc oxide nanoparticles were slightly worse. Titanium dioxide caused only DNA damage. Carbon nanotubes caused DNA damage at low levels. Copper oxide[disambiguation needed ] was found to be the worst offender, and was the only nanomaterial identified by the researchers as a clear health risk.[16]

See also

References

  1. ^ Cristina Buzea, Ivan Pacheco, and Kevin Robbie (2007). "Nanomaterials and Nanoparticles: Sources and Toxicity". Biointerphases 2 (4): MR17–MR71. doi:10.1116/1.2815690. PMID 20419892. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=BJIOBN00000200000400MR17000001&idtype=cvips&gifs=Yes. 
  2. ^ Nanomaterials. European Commission. Last updated 18 October 2011
  3. ^ Edited by George Y. Onoda, Jr., and Larry L. Hench (1979). Onoda, G.Y., Jr. and Hench, L.L. Eds. ed. Ceramic Processing Before Firing. New York: Wiley & Sons. ISBN 0471654108. 
  4. ^ Aksay, I.A., Lange, F.F., Davis, B.I. (1983). "Uniformity of Al2O3-ZrO2 Composites by Colloidal Filtration". J. Am. Ceram. Soc. 66: C-190. doi:10.1111/j.1151-2916.1983.tb10550.x. 
  5. ^ Franks, G.V. and Lange, F.F. (1996). "Plastic-to-Brittle Transition of Saturated, Alumina Powder Compacts". J. Am. Ceram. Soc. 79: 3161. doi:10.1111/j.1151-2916.1996.tb08091.x. 
  6. ^ Evans, A.G. and Davidge, R.W. (1969). "The strength and fracture of fully dense polycrystalline magnesium oxide". Phil. Mag. 20 (164): 373. Bibcode 1969PMag...20..373E. doi:10.1080/14786436908228708. 
  7. ^ J Mat. Sci. 5: 314. 1970. 
  8. ^ Lange, F.F. and Metcalf, M. (1983). "Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering". J. Am. Ceram. Soc. 66: 398. doi:10.1111/j.1151-2916.1983.tb10069.x. 
  9. ^ Evans, A.G. (1987). "Considerations of Inhomogeneity Effects in Sintering". J. Am. Ceram. Soc. 65: 497. doi:10.1111/j.1151-2916.1982.tb10340.x. 
  10. ^ Whitesides, G.M., et al. (1991). "Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures". Science 254: 1312. Bibcode 1991Sci...254.1312W. doi:10.1126/science.1962191. PMID 1962191. 
  11. ^ Dubbs D. M, Aksay I.A. (2000). "Self-Assembled Ceramics". Ann. Rev. Phys. Chem. 51: 601. Bibcode 2000ARPC...51..601D. doi:10.1146/annurev.physchem.51.1.601. PMID 11031294. 
  12. ^ Zsigmondy, R. "Colloids and the Ultramicroscope", J.Wiley and Sons, NY, (1914)
  13. ^ Dukhin, A.S. and Goetz, P.J. (2002). Ultrasound for characterizing colloids. Elsevier. 
  14. ^ "Safety of Manufactured Nanomaterials: About, OECD Environment Directorate". OECD.org. 18 July 2007. http://www.oecd.org/about/0,3347,en_2649_37015404_1_1_1_1_1,00.html. 
  15. ^ a b C. Lauterwasser (18 July 2007). OECD.org. http://www.oecd.org/dataoecd/37/19/37770473.pdf. 
  16. ^ Chemical & Engineering News Vol. 86 No. 35, 1 Sept. 2008, "Study Sizes up Nanomaterial Toxicity", p. 44

Further reading

  • Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing by C. Jeffrey Brinker and George W. Scherer, Academic Press (1990)

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • nanomaterials —  Nanomaterials  Наноматериалы   Разновидность продукции наноиндустрии в виде материалов, содержащих структурные элементы с нанометровыми размерами, наличие которых обеспечивает существенное улучшение или появление качественно новых механических,… …   Толковый англо-русский словарь по нанотехнологии. - М.

  • Center for Functional Nanomaterials — The Center for Functional Nanomaterials (CFN) at Brookhaven National Laboratory will provide state of the art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic level tailoring of nanomaterials to… …   Wikipedia

  • наноматериалы —  Nanomaterials  Наноматериалы   Разновидность продукции наноиндустрии в виде материалов, содержащих структурные элементы с нанометровыми размерами, наличие которых обеспечивает существенное улучшение или появление качественно новых механических,… …   Толковый англо-русский словарь по нанотехнологии. - М.

  • Nanotoxicology — For the scientific journal of this name, see Nanotoxicology (journal). Part of a series of articles on the Impact of Nanotechnology …   Wikipedia

  • Impact of nanotechnology — Part of a series of articles on the Impact of Nanotechnology …   Wikipedia

  • Nanotechnology — Part of a series of articles on …   Wikipedia

  • Implications of nanotechnology — The implications of nanotechnology run the gamut of human affairs from the medical, ethical, mental, legal and environmental, to fields such as engineering, biology, chemistry, computing, materials science, military applications, and… …   Wikipedia

  • Regulation of nanotechnology — Due to the ongoing argument on the implications of nanotechnology, there is significant debate related to the question of whether nanotechnology or nanotechnology based products merit special government regulation. This debate is related to the… …   Wikipedia

  • List of nanotechnology applications — Part of a series of articles on Nanotechnology …   Wikipedia

  • Nanoparticle — In nanotechnology, a particle is defined as a small object that behaves as a whole unit in terms of its transport and properties. Particles are further classified according to size[1] : in terms of diameter, coarse particles cover a range… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”