- Grid energy storage
Grid energy storage is used to manage the flow of electrical energy. For large-scale load levelling on an interconnected electrical system, electric energy producers send low value off-peak excess electricity over the electricity transmission grid to temporary energy storage sites that become energy producers when electricity demand is greater. This reduces the cost of peak demand electricity by making off-peak energy available for use during peak demand without having to provide excess generation capacity that would not be used most of the day.
In addition, grid-connected intermittent energy sources such as photovoltaic and wind turbine users can use the electric power network to absorb surplus produced and meet needs during periods when the intermittent source is not available through the use of
net metering . Effectively the intermittent source displaces energy that would have been produced by other sources. The grid connected system does not store energy on behalf of the intermittent source, instead it relies on the load following capability of other generating units. That works fine at low penetration levels (i.e., when intermittent sources provide only a small fraction of total electricity on the grid), because the grid had already handled a similar variability in electricity demand. At high penetration levels, however, grid energy storage becomes necessary to absorb the peak solar and wind outputs, when they exceed load demand. Solar and wind are non-dispatchable; they need the grid to accept them whenever they are available.Forms
Pumped water
In many places, pumped storage hydroelectricity is used to even out the daily generating load, by pumping water to a high storage reservoir during off-peak hours and weekends, using the excess base-load capacity from coal or nuclear sources. During peak hours, this water can be used for
hydroelectric generation, often as a high value rapid-response reserve to cover transient peaks in demand. Pumped storage recovers about 75% of the energy consumed, and is currently the most cost effective form of mass power storage. The chief problem with pumped storage is that it usually requires two nearby reservoirs at considerably different heights, and often requires considerable capital expenditure. [ [http://www.doc.ic.ac.uk/~matti/ise2grp/energystorage_report/node6.html] ]Pumped water systems can come on-line very quickly, typically within 15 seconds,cite web |url=http://www.fhc.co.uk/dinorwig.htm |title=First Hydro Dinorwig Power Station |format= |work= |accessdate=] which makes these systems very efficient at soaking up variability in electrical "demand" from consumers. There is over 90 GW of pumped storage in operation around the world, which is about 3% of "instantaneous" global generation capacity. Pumped water storage systems, such as the Dinorwig storage system, hold five or six hours of generating capacity, and are used to smooth out demand variations.
Another example is the Tianhuangping Pumped-Storage Hydro Plant in China, [ [http://www.power-technology.com/projects/tianhuangping/ Power Technology - Tianhuangping China Pumped-Storage Hydro Plant] ] which has a reservoir capacity of eight million cubic meters (2.1 billion gallons or the volume of water over
Niagara Falls in 25 minutes) with a vertical distance of 600 m (1970 feet). The reservoir can provide about 13 million kWh of stored gravitational potential energy (convertible to electricity at about 80% efficiency), or about 2% of China's daily electricity consumption. [ [https://www.cia.gov/library/publications/the-world-factbook/print/ch.html CIA - The World Factbook - China] ]Hydroelectric dams with large reservoirs can also be operated to provide peak generation at times of peak demand. Water is stored in the reservoir during periods of low demand and released through the plant when demand is higher. The net effect is the same as pumped storage, but without the pumping loss. Depending on the reservoir capacity the plant can provide daily, weekly, or seasonal load following.
Additionally a new concept in pumped-storage is utilizing
wind energy orsolar power to pump water.Wind turbine s or solar cells that direct drivewater pump s for an 'energy storing wind or solardam ' can make this a more efficient process, but are again limited in total capacity. Such systems can only cover for windless periods of a few hours.Batteries
Battery storage was used in the early days of direct-current electric power networks, and is appearing again. Battery systems connected to large solid-state converters have been used to stabilize power distribution networks. For example in Puerto Rico a system with a capacity of 20 megawatts for 15 minutes is used to stabilize the frequency of electric power produced on the island. A 27 megawatt 15 minute nickel-cadmium battery bank was installed at Anchorage Alaska in 2003 to stabilize voltage at the end of a long transmission line. [cite journal |doi=10.1109/MPAE.2005.1405868 |title= The United States of storage |year=2005 |author=Gyuk I, Kulkarni P, Sayer JH, 'et al'|journal=IEEE Power and Energy Magazine |volume=3 |pages=31–9 ] Many "off-the-grid" domestic systems rely on battery storage, but storing large amounts of electricity in batteries or by other electrical means has not yet been put to general use.
Batteries are generally expensive, have high maintenance, and have limited lifespans. One possible technology for large-scale storage are large-scale flow batteries. Sodium-sulfur batteries could also be inexpensive to implement on a large scale and have been used for grid storage in Japan and in the United States [http://www.appalachianpower.com/news/releases/viewrelease.asp?releaseID=281] . Vanadium redox batteries and other types of flow batteries are also beginning to be used for energy storage including the averaging of generation from wind turbines. Battery storage has relatively high efficiency, as high as 90% or better.
When
plug-in hybrid and/orelectric car s are mass-produced [http://www.newscientist.com/article.ns?id=dn7081 , http://www.toshiba.co.jp/about/press/2005_03/pr2901.htm ] these mobile energy sinks could be utilized for their energy storage capabilities.Vehicle-to-grid technology can be employed, turning each vehicle with its 20 to 50 kWhbattery pack into a distributed load-balancing device or emergency power source. This represents 2 to 5 days per vehicle of average household requirements of 10 kWh per day, assuming annual consumption of 3650 kWh. This quantity of energy is equivalent to between 40 and convert|300|mi|km of range in such vehicles consuming 0.5 to 0.16 kWh per mile. These figures can be achieved even in home-madeelectric vehicle conversion s. Some electric utilities plan to use old plug-in vehicle batteries (sometimes resulting in a giant battery) to store electricityWoody, Todd. [http://blogs.business2.com/greenwombat/2007/06/photo_green_wom.html "PG&E's Battery Power Plans Could Jump Start Electric Car Market."] (Blog). "Green Wombat",2007 -06-12 . Retrieved on2007 -08-19 ] [ [http://www.planetark.com/dailynewsstory.cfm/newsid/44343/story.htm Planet Ark : E.ON UK Plans Giant Battery to Store Wind Power ] ] Newer Li-ion batteries can be deep discharged for over 25,000 cycles. [ [http://www.altairnano.com/documents/08.27.07_battery_longer_than_car.pdf How to build a battery that lasts longer than a car] accessed 28 October 2007]Rechargeable flow batteries can be used as a rapid-response storage medium. [ [http://www.memagazine.org/backissues/membersonly/oct05/features/rerere/rerere.html "Renewable. Rechargeable. Remarkable.", Feature Article, September 2005 ] ] Vanadium redox flow batteries are currently installed at Huxley Hill wind farm (
Australia ),Tomari Wind Hills atHokkaidō (Japan ), as well as in other non-wind farm applications. A further 12 MWh flow battery is to be installed at theSorne Hill wind farm (Ireland). [ [http://www.leonardo-energy.org/drupal/node/959 Wind farm with battery storage in Ireland | Leonardo ENERGY ] ] These storage systems are designed to smooth out transient fluctuations in wind energy supply. The redox flow battery mentioned in the first article cited above has a capacity of 6 MWh, which represents under an hour of electrical flow from this particular wind farm (at 25% capacity factor on its 30 MW rated capacity).Compressed air
Another grid energy storage method is to use off-peak or renewably generated electricity to compress air, which is usually stored in an old mine or some other kind of geological feature. When electricity demand is high, the compressed air is heated with a small amount of
natural gas and then goes through expanders to generate electricity. [ [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B83WY-4PSKBW7-1T&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=ea6a11163a87003243bb007fb6f73e5f Storing energy from the wind in compressed-air reservoirs] Daniel Pendicka, The New Scientist Volume 195, Issue 2623, 29 September 2007, Pages 44-47 . Accessed December 2007]Thermal
Design proposals have been made for the use of molten salt as a heat store to store heat collected by a
solar tower so that it can be used to generate electricity in bad weather or at night. Thermal efficiencies over one year of 99% have been predicted. [ [http://www.sandia.gov/Renewable_Energy/solarthermal/NSTTF/salt.htm Advantages of Using Molten Salt] Tom Mancini, Sandia National Laboratories, Albuquerque, NM Accessed December 2007]Off-peak electricity can be used to make
ice from water, and the ice can be stored until the next day, when it is used to cool either the air in a large building, thereby shifting that demand off-peak, or the intake air of agas turbine generator, thereby increasing the on-peak generation capacity.Flywheel
Mechanical inertia is the basis of this storage method. A heavy rotating disc is accelerated by an
electric motor , which acts as a generator on reversal, slowing down the disc and producing electricity. Electricity is stored as thekinetic energy of the disc.Friction must be kept to a minimum to prolong the storage time. This is often achieved by placing the flywheel in a vacuum and usingmagnetic bearing s, tending to make the method expensive. Larger flywheel speeds allow greater storage capacity but require strong materials such assteel orcomposite material s to resist thecentrifugal forces (or rather, to providecentripetal force s). The use ofcarbon nanotube s as a flywheel material is being researchedFact|date=October 2007. The ranges of power and energy storage technically and economically achievable, however, tend to make flywheels unsuitable for general power system application; they are probably best suited to load-leveling applications on railway power systems and for improvingpower quality inrenewable energy systems. One application that currently uses flywheel storage is applications that require very high bursts of power for very short durations such astokamak andlaser experiments where a motor generator is spun up to operating speed and may actually come to a stop in one revolution. Flywheel storage is also currently used to provide Uninterruptible Power Supply systems (such as those in large datacenters) for ride-through power necessary during transfer - that is, the relatively brief amount of time between a loss of power to the mains and the warm-up of an alternate source, such as adiesel generator .This potential solution has been implemented by EDA [ [http://www.eda.pt EDA - Electricidade dos Açores ] ] in the
Azores on the islands ofGraciosa andFlores . This system uses a 18MWs flywheel to improvepower quality and thus allow increased renewable energy usage. As the description suggests, these systems are again designed to smooth out transient fluctuations in supply, and could never be used to cope with an outage of couple of days or more. The most powerfulflywheel energy storage systems available can hold up to 133 kWh of energyFact|date=January 2008.Superconducting magnetic energy
Superconducting magnetic energy storage (SMES) systems store energy in the
magnetic field created by the flow ofdirect current in a superconducting coil which has been cryogenically cooled to a temperature below its superconducting critical temperature. A typical SMES system includes three parts: superconductingcoil , power conditioning system and cryogenically cooled refrigerator. Once the superconducting coil is charged, the current will not decay and the magnetic energy can be stored indefinitely. The stored energy can be released back to the network by discharging the coil. The power conditioning system uses an inverter/rectifier to transformalternating current (AC) power to direct current or convert DC back to AC power. The inverter/rectifier accounts for about 2-3% energy loss in each direction. SMES loses the least amount ofelectricity in the energy storage process compared to other methods of storing energy. SMES systems are highly efficient; the round-trip efficiency is greater than 95%. The high cost of superconductors is the primary limitation for commercial use of this energy storage method.Due to the energy requirements of
refrigeration , and the limits in the total energy able to be stored, SMES is currently used for short duration energy storage. Therefore, SMES is most commonly devoted to improvingpower quality . If SMES were to be used for utilities it would be a diurnal storage device, charged from base load power at night and meeting peak loads during the day.Hydrogen
Hydrogen is also being developed as an electrical power storage medium. Hydrogen is not a primary energy source, but a portable energy storage method, because it must first be manufactured by other energy sources in order to be used. However, as a storage medium, it may be a significant factor in using renewable energies. Seehydrogen storage . Hydrogen may be used in conventionalinternal combustion engine s, or infuel cell s which convert chemical energy directly to electricity without flames, similar to the way the human body burns fuel. Thehydrogen production requires either reforming natural gas with steam, or, for a possibly renewable and more ecologic source, "theelectrolysis of water " into hydrogen andoxygen . The former process hascarbon dioxide as a by-product. Withhigh pressure electrolysis , the greenhouse burden depends on the source of the power.Energy losses are involved in the
hydrogen storage cycle of production for vehicle applications withelectrolysis of water , liquification or compression, and conversion back to electricity.cite news | first=Lisa | last=Zyga | coauthors= | title=Why a hydrogen economy doesn't make sense | date=2006-12-11:15-44 | publisher=Physorg.com | url =http://www.physorg.com/news85074285.html | work =Physorg.com web site | pages = | accessdate = 2007-11-17 | language = ] and thehydrogen storage cycle of production for thestationary fuel cell applications like microchp withbiohydrogen , liquification or compression, and conversion to electricity.With intermittent renewables such as solar and wind, the output may be fed directly into an electricity grid. At penetrations below 20% of the grid demand, this does not severely change the economics; but beyond about 20% of the total demand, external storage will become important. If these sources are used for electricity to make hydrogen, then they can be utilized fully whenever they are available, opportunistically. Broadly speaking, it does not matter when they cut in or out, the hydrogen is simply stored and used as required. A community based pilot program using
wind turbines and hydrogen generators is being developed undertaken from 2007 for five years in the remote community ofRamea, Newfoundland and Labrador . [ [http://www.ieawind.org/wnd_info/KWEA_pdf/Oprisan_KWEA_.pdf Introduction of Hydrogen Technologies to Ramea Island] ] A similar project has been going on since 2004 onUtsira , a small norwegian island municipality.Nuclear advocates note that using nuclear power to manufacture hydrogen would help solve plant inefficiencies. Here the plant would be run continuously at full capacity, with perhaps all the output being supplied to the grid in peak periods, and any not needed to meet demand being used to make hydrogen at other times. This would mean far better efficiency for the nuclear power plants. High temperature (950-1,000°C) gas cooled nuclear
generation IV reactor s have the potential to separate hydrogen from water by thermochemical means using nuclear heat as in thesulfur-iodine cycle .The efficiency for hydrogen storage is typically 50 to 60%Fact|date=September 2008 overall, which is lower than pumped storage systems or batteries. About 50 kWh (180 MJ) is required to produce a kilogram of hydrogen by electrolysis, so the cost of the electricity clearly is crucial, even for hydrogen uses other than storage for electrical generation. At $0.03/kWh, common off-peak high-voltage line rate in the U.S., this means hydrogen costs $1.50 a kilogram for the electricity, equivalent to $1.50 a US gallon for
gasoline if used in a fuel cell vehicle. Other costs would include the electrolyzer plant,hydrogen compressor s or liquefaction, storage and transportation, which will be significant.Underground cavern hydrogen storage is the practice ofhydrogen storage in undergroundcavern s. Large quantities of gaseous hydrogen are stored in underground caverns by ICI since many years without any difficulties [ [http://www.hyweb.de/Knowledge/Ecn-h2a.html 1994 - ECN abstract] ] . The storage of large quantities of hydrogen underground can function as grid energy storage which is essential for thehydrogen economy .Economics
Generally speaking, energy storage is economical when the
marginal cost of electricity varies more than the costs of storing and retrieving the energy plus the price of energy lost in the process. For instance, assume a pumped-storage reservoir can pump to its upper reservoir water equivalent to 1,200MWh during the night, for $15 per MWh, at a total cost of $18,000. The next day, all of the stored energy can be sold at the peak hours for $40 per MWh, but from the 1,200 MWh pumped 50 were lost due to evaporation and seeping in the reservoir. 1,150 MWh are sold for $46,000, for a final profit of $28,000.However, the marginal cost of electricity varies because of the varying operational and fuel costs of different classes of generators. At one extreme,
base load power plant s such as coal-fired power plants andnuclear power plants are low marginal cost generators, as they have high capital and maintenance costs but low fuel costs. At the other extreme,peaking power plant s such asgas turbine natural gas plants burn expensive fuel but are cheaper to build, operate and maintain. To minimize the total operational cost of generating power, base load generators are dispatched most of the time, while peak power generators are dispatched only when necessary, generally when energy demand peaks. This is called "economic dispatch".Demand for
electricity from the world's various grids varies over the course of the day and from season to season. For the most part, variation in electric demand is met by varying the amount of electrical energy supplied from primary sources. Increasingly, however, operators are storing lower-cost energy produced at night, then releasing it to the grid during the peak periods of the day when it is more valuable. [ [http://www.eia.doe.gov/emeu/aer/pdf/pages/sec8_8.pdf Energy Information Administration / Annual Energy Review 2006] , Table 8.2a] In areas where hydroelectric dams exist, release can be delayed until demand is greater; this form of storage is common and can make use of existing reservoirs. This is not storing "surplus" energy produced elsewhere, but the net effect is the same - although without the efficiency losses. Renewable supplies with variable production, like wind andsolar power , tend to increase the net variation in electric load, increasing the opportunity for grid energy storage.Load Levelling
The demand for electricity from consumers and industry is constantly changing, broadly within the following categories:
*Seasonal (during dark winters more electric lighting and heating is required, while in other climates hot weather boosts the requirement for air conditioning)
*Weekly (most industry closes at the weekend, lowering demand)
*Daily (such as the peak as everyone arrives home and switches the television on)
*Hourly (one method for estimating television viewing figures in the United Kingdom is to measure the power spikes during advertisement breaks or after programmes when viewers go to switch the kettle on [ [http://news.bbc.co.uk/1/hi/special_report/for_christmas/_new_year/christmas_television/37945.stm The great TV ratings war] ] )
*Transient (fluctuations due to individual's actions, differences in power transmission efficiency and other small factors that need to be accounted for)There are currently three main methods for dealing with changing demand:
*Electrical devices generally having a workingvoltage range that they require, commonly 110-120V or 220-240V. Minor variations in load are automatically smoothed by slight variations in the voltage available across the system.
*Power plants can be run below their normal output, with the facility to increase the amount they generate almost instantaneously. This is termed 'Spinning Reserve'.
*Additional power plants can be brought online to provide a larger generating capacity. Typically, these would be combustion gas turbines, which can be started in a matter of minutes.The problem with relying on these last two methods in particular is that they are expensive, because they leave expensive generating equipment unused much of the time, and because plants running below maximum output usually produce at less than their best efficiency. Grid energy storage is used to shift load from peak to off-peak hours. Power plants are able to run closer to their peak efficiency for much of the year.
Energy demand management
The easiest way to deal with varying electrical loads is to decrease the difference between varying generation and demand. This is referred to as demand side management (DSM). For decades, utilities have sold off-peak power to large consumers at lower rates, to encourage these users to shift their loads to off-peak hours, in the same way that telephone companies do with individual customers. Usually, these time-dependent prices are negotiated ahead of time. In an attempt to save more money, some utilities are experimenting with selling electricity at minute-by-minute
spot price s, which allow those users with monitoring equipment to detect demand peaks as they happen, and shift demand to save both the user and the utility money. Demand side management can be manual or automatic and is not limited to large industrial customers. In residential and small business applications, for example, appliance control modules can reduce energy usage of water heaters,air conditioning units, refrigerators, and other devices during these periods by turning them off for some portion of the peak demand time or by reducing the power that they draw. Energy demand management includes more than reducing overall energy use or shifting loads to off-peak hours. A particularly effective method of energy demand management is the installation of more energy efficient equipment. For example, many utilities give rebates for the purchase of insulation,weatherstripping , and appliances andlight bulb s that are energy efficient. Companies with factories and large buildings can also install such products, but they can also buy energy efficient industrial equipment, likeboiler s, or use more efficient processes to produce products. Companies may get incentives like rebates or low interest loans from utilities or the government for the installation of energy efficient industrial equipment.Portability
This is the area of greatest success for current energy storage technologies. Single-use and rechargeable batteries are ubiquitous, and provide power for devices with demands as varied as digital watches and cars. Advances in battery technology have generally been slow, however, with much of the advance in battery life that consumers see being attributable to efficient power management rather than increased storage capacity. This has become an issue as pressure grows for alternatives to the
internal combustion engine in cars and other means of transport. These uses require far moreenergy density (the amount of energy stored in a given volume or weight) than current battery technology can deliver. Liquidhydrocarbon fuel (such asgasoline ,ethanol/petrol anddiesel ) have much higher energy densities.Reliability
Virtually all devices that operate on electricity are adversely affected by the sudden removal of their power supply. Solutions such as UPS (uninterruptible power supplies) or backup generators are available, but these are expensive. Efficient methods of power storage would allow for devices to have a built-in backup for power cuts, and also reduce the impact of a failure in a generating station. Examples of this are currently available using
fuel cell s and flywheels.ee also
*
Battery-to-grid
*Distributed generation
*Energy storage
*Grid-tied electrical system
*Virtual power plant
*Wind farm References
External links
* [http://www.energyislife.org/?p=35&lang_view=en Hydrogen Economy]
* [http://www.electricitystorage.org/technologies.htm Electricity storage technologies]
**Graphical comparisons of different energy storage systems:
*** [http://www.electricitystorage.org/pix/photo_ESAratings.gifSystem power ratings]
*** [http://www.electricitystorage.org/pix/photo_EnergyDensity.gifEnergy density]
*** [http://www.electricitystorage.org/pix/photo_ESACost.gifCost per unit]
*** [http://www.electricitystorage.org/pix/Photo_ESAEfficiency2.gifEfficiency]
*** [http://www.electricitystorage.org/pix/photo_ESApercycle.gifCapital cost per cycle]
*** [http://www.abb.com/cawp/seitp202/0B6D46A05BBC3A27C1256FF2002FD2A0.aspx A large grid-connected nickel-cadmium battery]
* [http://terraverde.wordpress.com/2007/10/07/the-renewable-electron-economy-part-vii-stationary-energy-storage%E2%80%A6key-to-the-renewable-grid/ Stationary Energy Storage…Key to the Renewable Grid]
Wikimedia Foundation. 2010.