- Steam reforming
Steam reforming (SR), hydrogen reforming or catalytic oxidation, is a method of producing
hydrogen fromhydrocarbons . On an industrial scale, it is the dominant method for producing hydrogen. Small-scale steam reforming units are currently subject to scientific research, as way to provide hydrogen tofuel cells .History
* 1923 - The first synthetic methanol is produced by BASF in
Leuna Industrial reforming
Steam reforming of
natural gas orsyngas sometimes referred to as steammethane reforming (SMR) is the most common method of producing commercial bulk hydrogen as well as the hydrogen used in the industrial synthesis of ammonia. It is also the least expensive method. [George W. Crabtree, Mildred S. Dresselhaus, and Michelle V. Buchanan, "The Hydrogen Economy",Physics Today , December,2004 [http://www.physicstoday.org/vol-57/iss-12/p39.html] ] At high temperatures (700 – 1100 °C) and in the presence of ametal -basedcatalyst (nickel ), steam reacts with methane to yieldcarbon monoxide and hydrogenAdditional hydrogen can be recovered by a lower-temperature gas-shift reaction with the
carbon monoxide produced. The reaction is summarised by:The
United States produces nine million tons of hydrogen per year, mostly with steam reforming of natural gas. The worldwide ammonia production, using hydrogen derived from steam reforming, was 109 millionmetric tonnes in 2004. [http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/nitromcs05.pdf United States Geological Survey publication] ]This SMR process is quite different from and not to be confused with
catalytic reforming ofnaphtha , anoil refinery process that also produces significant amounts of hydrogen along with high octanegasoline .The efficiency of the process is approximately 65% to 75%.
A great deal of
ethylene is produced by a non-catalytic process called "steam cracking" which cracks (i.e., reforms) large hydrocarbon molecules into smaller molecules). In the year 2003, 97,000,000 metric tons of ethylene (used to produce polyethylene and a host of other petrochemicals) were manufactured worldwide by the steam cracking of various hydrocarbons (methane,ethane , LPG, naphtha, andfuel oil s.Fueling fuel cells
Steam reforming of liquid hydrocarbons is seen as a potential way to provide fuel for
fuel cells . The basic idea is that for example amethanol tank and a steam reforming unit would replace the bulky pressurized hydrogen tanks that would otherwise be necessary. This might mitigate the distribution problems associated with hydrogen vehicles.However, there are several challenges associated with this technology:
* The reforming reaction takes place at high temperatures, making it slow to start up and requiring costly high temperature materials.
*Sulfur compounds present in the fuel poison certain catalysts, making it difficult to run this type of system from ordinarygasoline . Some new technologies have overcome this challenge, however, with sulfur-tolerant catalysts.
* Low temperature polymer fuel cell membranes can be poisoned by the carbon monoxide (CO) produced by the reactor, making it necessary to include complex CO-removal systems. Solid oxide fuel cells (SOFC cells) do not have this problem.
* Thethermodynamic efficiency of the process is between 70% and 85% (LHV basis) depending on the purity of the hydrogen product.
* The biggest problem for reformer based systems remains the fuel cell itself, in terms of both cost and durability. The catalyst used in the common polymer-electrolyte-membrane fuel cell, the device most likely to be used in transportation roles, is very sensitive to any leftover carbon monoxide in the fuel, which some reformers do not completely remove. The membrane is poisoned by the carbon monoxide and its performance degrades.
* The catalyst is frequently very expensive.The reformer–fuel-cell system is still being researched but in the near term, systems would continue to run on existing fuels, such as natural gas or gasoline or diesel, but there is an active debate about whether using these fuels to make hydrogen is beneficial, when global warming is such an issue. The overall cost of making, transporting and storing the hydrogen fuel is also a key issue.
The process
Some of the chemical reactions that can take place are:
:CnHm + n H2O → n CO + (m/2 + n) H2
:CO + H2O → CO2 + H2
The produced carbon monoxide can combine with more steam to produce further hydrogen via the
water gas shift reaction . Other reactions (some undesirable, like coke formation) can take place if local conditions are favorable.The first reaction is
endothermic (consumes heat), the second reaction isexothermic (produces heat).The process produces 2.51 times as much CO2 by mass as it does H2.
References
External links
* [http://www.guardian.co.uk/environment/2008/aug/21/biofuels.travelandtransport "New catalyst boosts hydrogen as transport fuel"] . By Alok Jha. August 21, 2008. "
The Guardian ."
* [http://www.getenergysmart.org/Files/HydrogenEducation/6HydrogenProductionSteamMethaneReforming.pdf "Hydrogem Production - Steam Methane Reforming (SMR)"]See also
*
Hydrogen technologies
*Timeline of hydrogen technologies
*Methane
*Natural gas
*Biogas
*PROX
Wikimedia Foundation. 2010.