- Scanning probe microscopy
-
Part of a series of articles on Nanotechnology Nanomaterials Nanomedicine Molecular self-assembly Nanoelectronics Scanning probe microscopy Molecular nanotechnology Nanotechnology Portal Scanning Probe Microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. An image of the surface is obtained by mechanically moving the probe in a raster scan of the specimen, line by line, and recording the probe-surface interaction as a function of position. SPM was founded with the invention of the scanning tunneling microscope in 1981.
Many scanning probe microscopes can image several interactions simultaneously. The manner of using these interactions to obtain an image is generally called a mode.
The resolution varies somewhat from technique to technique, but some probe techniques reach a rather impressive atomic resolution. They owe this largely to the ability of piezoelectric actuators to execute motions with a precision and accuracy at the atomic level or better on electronic command. One could rightly call this family of techniques "piezoelectric techniques". The other common denominator is that the data are typically obtained as a two-dimensional grid of data points, visualized in false color as a computer image.
Contents
Established types of scanning probe microscopy
- AFM, atomic force microscopy [1]
- Contact AFM
- Non-contact AFM
- Dynamic contact AFM
- Tapping AFM
- BEEM, ballistic electron emission microscopy[2]
- CFM, chemical force microscopy
- C-AFM, conductive atomic force microscopy[3]
- ECSTM electrochemical scanning tunneling microscope[4]
- EFM, electrostatic force microscopy[5]
- FMM, force modulation microscopy[6]
- KPFM, kelvin probe force microscopy[7]
- MFM, magnetic force microscopy[8]
- MRFM, magnetic resonance force microscopy[9]
- NSOM, near-field scanning optical microscopy (or SNOM, scanning near-field optical microscopy)[10]
- PFM, Piezoresponse Force Microscopy[11]
- PSTM, photon scanning tunneling microscopy[12]
- PTMS, photothermal microspectroscopy/microscopy
- SCM, scanning capacitance microscopy[13]
- SECM, scanning electrochemical microscopy
- SGM, scanning gate microscopy[14]
- SHPM, scanning Hall probe microscopy[15]
- SICM, scanning ion-conductance microscopy[16]
- SPSM spin polarized scanning tunneling microscopy[17]
- SSRM, scanning spreading resistance microscopy[18]
- SThM, scanning thermal microscopy[19]
- STM, scanning tunneling microscopy[20]
- STP, scanning tunneling potentiometry[21]
- SVM, scanning voltage microscopy[22]
- SXSTM, synchrotron x-ray scanning tunneling microscopy[23]
Of these techniques AFM and STM are the most commonly used for roughness measurements.
Probe tips
Probe tips are normally made of platinum/iridium, silicon nitride or gold. There are two main methods for obtaining a sharp probe tip, acid etching and cutting. The first involves dipping a wire end first into an acid bath and waiting until it has etched through the wire and the lower part drops away. The remainder is then removed and the resulting tip is often one atom in diameter. An alternative and much quicker method is to take a thin wire and cut it with a pair of scissors or a scalpel. Testing the tip produced via this method on a sample with a known profile will indicate whether the tip is good or not and a single sharp point is achieved roughly 50% of the time. It is not uncommon for this method to result in a tip with more than one peak; one can easily discern this upon scan due to a high level of ghost images.
Advantages of scanning probe microscopy
- The resolution of the microscopes is not limited by diffraction, but only by the size of the probe-sample interaction volume (i.e., point spread function), which can be as small as a few picometres. Hence the ability to measure small local differences in object height (like that of 135 picometre steps on <100> silicon) is unparalleled. Laterally the probe-sample interaction extends only across the tip atom or atoms involved in the interaction.
- The interaction can be used to modify the sample to create small structures (nanolithography).
- Unlike electron microscope methods, specimens do not require a partial vacuum but can be observed in air at standard temperature and pressure or while submerged in a liquid reaction vessel.
Disadvantages of scanning probe microscopy
- The detailed shape of the scanning tip is sometimes difficult to determine. Its effect on the resulting data is particularly noticeable if the specimen varies greatly in height over lateral distances of 10 nm or less.
- The scanning techniques are generally slower in acquiring images, due to the scanning process. As a result, efforts are being made to greatly improve the scanning rate. Like all scanning techniques, the embedding of spatial information into a time sequence opens the door to uncertainties in metrology, say of lateral spacings and angles, which arise due to time-domain effects like specimen drift, feedback loop oscillation, and mechanical vibration.
- The maximum image size is generally smaller.
- Scanning probe microscopy is often not useful for examining buried solid-solid or liquid-liquid interfaces.
References
- ^ Binnig, G.; C. F. Quate, Ch. Gerber (1986-03-03). "Atomic Force Microscope". Physical Review Letters 56 (9): 930–933. Bibcode 1986PhRvL..56..930B. doi:10.1103/PhysRevLett.56.930. PMID 10033323.
- ^ Kaiser, W. J.; L. D. Bell (1988). "Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy". Physical Review Letters 60 (14): 1406–1409. Bibcode 1988PhRvL..60.1406K. doi:10.1103/PhysRevLett.60.1406. PMID 10038030.
- ^ Zhang, L.; T. Sakai, N. Sakuma, T. Ono, K. Nakayama (1999). "Nanostructural conductivity and surface-potential study of low-field-emission carbon films with conductive scanning probe microscopy". Applied Physics Letters 75 (22): 3527–3529. Bibcode 1999ApPhL..75.3527Z. doi:10.1063/1.125377.
- ^ Higgins, S. R.; R. J. Hamers (1996-03). "Morphology and dissolution processes of metal sulfide minerals observed with the electrochemical scanning tunneling microscope". J. Vac. Sci. Technol. B. 14. AVS. pp. 1360–1364. doi:10.1116/1.589098. http://link.aip.org/link/?JVB/14/1360/1. Retrieved 2009-10-05.
- ^ Weaver, J. M. R.; David W. Abraham (1991). "High resolution atomic force microscopy potentiometry". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 9 (3): 1559–1561. Bibcode 1991JVSTB...9.1559W. doi:10.1116/1.585423.
- ^ Fritz, M.; M. Radmacher, N. Petersen, H. E. Gaub (1994-05). "Visualization and identification of intracellular structures by force modulation microscopy and drug induced degradation". The 1993 international conference on scanning tunneling microscopy. 12. The 1993 international conference on scanning tunneling microscopy. Beijing, China: AVS. pp. 1526–1529. doi:10.1116/1.587278. http://link.aip.org/link/?JVB/12/1526/1. Retrieved 2009-10-05.
- ^ Nonnenmacher, M.; M. P. O'Boyle, H. K. Wickramasinghe (1991). "Kelvin probe force microscopy". Applied Physics Letters 58 (25): 2921–2923. Bibcode 1991ApPhL..58.2921N. doi:10.1063/1.105227.
- ^ Hartmann, U. (1988). "Magnetic force microscopy: Some remarks from the micromagnetic point of view". Journal of Applied Physics 64 (3): 1561–1564. Bibcode 1988JAP....64.1561H. doi:10.1063/1.341836.
- ^ Sidles, J. A.; J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S. Hoen, C. S. Yannoni (1995). "Magnetic resonance force microscopy". Reviews of Modern Physics 67 (1): 249. Bibcode 1995RvMP...67..249S. doi:10.1103/RevModPhys.67.249.
- ^ BETZIG, E.; J. K. TRAUTMAN, T. D. HARRIS, J. S. WEINER, R. L. KOSTELAK (1991-03-22). "Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale". Science 251 (5000): 1468–1470. Bibcode 1991Sci...251.1468B. doi:10.1126/science.251.5000.1468. PMID 17779440. http://www.sciencemag.org/cgi/content/abstract/251/5000/1468. Retrieved 2009-10-05.
- ^ Roelofs, A.; U. Bottger, R. Waser, F. Schlaphof, S. Trogisch, L. M. Eng (2000). "Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy". Applied Physics Letters 77 (21): 3444–3446. Bibcode 2000ApPhL..77.3444R. doi:10.1063/1.1328049.
- ^ Reddick, R. C.; R. J. Warmack, T. L. Ferrell (1989-01-01). "New form of scanning optical microscopy". Physical Review B 39 (1): 767. Bibcode 1989PhRvB..39..767R. doi:10.1103/PhysRevB.39.767. http://link.aps.org/abstract/PRB/v39/p767. Retrieved 2009-10-05.
- ^ Matey, J. R.; J. Blanc (1985). "Scanning capacitance microscopy". Journal of Applied Physics 57 (5): 1437–1444. Bibcode 1985JAP....57.1437M. doi:10.1063/1.334506.
- ^ Eriksson, M. A.; R. G. Beck, M. Topinka, J. A. Katine, R. M. Westervelt, K. L. Campman, A. C. Gossard (1996-07-29). "Cryogenic scanning probe characterization of semiconductor nanostructures". Applied Physics Letters 69 (5): 671–673. Bibcode 1996ApPhL..69..671E. doi:10.1063/1.117801. http://link.aip.org/link/?APL/69/671/1. Retrieved 2009-10-05.
- ^ Chang, A. M.; H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, T. Y. Chang (1992). "Scanning Hall probe microscopy". Applied Physics Letters 61 (16): 1974–1976. Bibcode 1992ApPhL..61.1974C. doi:10.1063/1.108334.
- ^ Hansma, PK; B Drake, O Marti, SA Gould, CB Prater (1989-02-03). "The scanning ion-conductance microscope". Science 243 (4891): 641–643. Bibcode 1989Sci...243..641H. doi:10.1126/science.2464851. PMID 2464851. http://www.sciencemag.org/cgi/content/abstract/243/4891/641. Retrieved 2009-10-05.
- ^ Wiesendanger, R.; M. Bode (2001-07-25). "Nano- and atomic-scale magnetism studied by spin-polarized scanning tunneling microscopy and spectroscopy". Solid State Communications 119 (4-5): 341–355. Bibcode 2001SSCom.119..341W. doi:10.1016/S0038-1098(01)00103-X. ISSN 0038-1098. http://www.sciencedirect.com/science/article/B6TVW-43J17SG-N/2/3a2fedcd6455295ad2be66a4b5b19635. Retrieved 2009-10-05.
- ^ De Wolf, P.; J. Snauwaert, T. Clarysse, W. Vandervorst, L. Hellemans (1995). "Characterization of a point-contact on silicon using force microscopy-supported resistance measurements". Applied Physics Letters 66 (12): 1530–1532. Bibcode 1995ApPhL..66.1530D. doi:10.1063/1.113636.
- ^ Xu, J. B.; K. Lauger, K. Dransfeld, I. H. Wilson (1994). "Thermal sensors for investigation of heat transfer in scanning probe microscopy". Review of Scientific Instruments 65 (7): 2262–2266. Bibcode 1994RScI...65.2262X. doi:10.1063/1.1145225.
- ^ Binnig, G.; H. Rohrer, Ch. Gerber, E. Weibel (1982). "Tunneling through a controllable vacuum gap". Applied Physics Letters 40 (2): 178–180. Bibcode 1982ApPhL..40..178B. doi:10.1063/1.92999.
- ^ http://wwwex.physik.uni-ulm.de/lehre/physikalischeelektronik/phys_elektr/node252.html
- ^ Trenkler, T.; P. De Wolf, W. Vandervorst, L. Hellemans (1998). "Nanopotentiometry: Local potential measurements in complementary metal--oxide--semiconductor transistors using atomic force microscopy". J. Vac. Sci. Techn. B 16: 367–372. Bibcode 1998JVSTB..16..367T. doi:10.1116/1.589812.
- ^ Volker Rose, John W. Freeland, Stephen K. Streiffer (2011). "New Capabilities at the Interface of X-Rays and Scanning Tunneling Microscopy". In Kalinin, Sergei V.; Gruverman, Alexei (Eds.). Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy (1st ed.). New York: Springer. pp. 405–431. doi:10.1007/978-1-4419-7167-8_14. ISBN 978-1-4419-6567-7. http://www.springerlink.com/content/p7390580006x7434/.
External links
- Scanning Probe Microscopy by John W. Cross
- Scanning Probe Microscopy at the Institute of Food Research
- Characterization in nanotechnology some pdfs
- Overview of STM/AFM/SNOM principles with educative Flash animations
- SPM Image Gallery - AFM STM SEM MFM NSOM and More
- How SPM Works
- SPM Scan Image Gallery
- SPM Glossary
- SPM gallery: surface scans, collages, artworks, desktop wallpapers
- SPM Applications: Image Gallery
- SPM Scan Image Gallery
Scanning probe microscopy Common Other Electrostatic force · Electrochemical scanning tunneling · Kelvin probe force · Magnetic force · Magnetic resonance force · Near-field scanning optical · Photothermal microspectroscopy · Scanning capacitance · Scanning gate · Scanning Hall probe · Scanning ion-conductance · Spin polarized scanning tunneling · Scanning voltageApplications See also Categories: - AFM, atomic force microscopy [1]
Wikimedia Foundation. 2010.