Magnetic force microscope

Magnetic force microscope
MFM images of 3.2 GB and 30 GB computer hard-drive surfaces.

Magnetic force microscope (MFM) is a variety of atomic force microscope, where a sharp magnetized tip scans a magnetic sample; the tip-sample magnetic interactions are detected and used to reconstruct the magnetic structure of the sample surface. Many kinds of magnetic interactions are measured by MFM, including magnetic dipole–dipole interaction. MFM scanning often uses non-contact AFM (NC-AFM) mode.



In MFM measurements, the magnetic force between the sample and the tip can be expressed as [1][2]

\vec F=\mu_o (\vec m \cdot \nabla ) \vec H \,\!

where \vec m \, \! is the magnetic moment of the tip (approximated as a point dipole), \vec H \, \! is the magnetic stray field from the sample surface, and µ0 is the magnetic permeability of free space.

Because the stray magnetic field from the sample can affect the magnetic state of the tip, and vice versa, interpretation of the MFM measurement is not straightforward. For instance, the geometry of the tip magnetization must be known for quantitative analysis.

Typical resolution of 30 nm can be achieved,[3] although resolutions as low as 10 to 20 nm are attainable.[4]

Important dates

A boost in the interest to MFM resulted from the following inventions [1][5][6]:

1982 - Scanning Tunneling Microscopy (STM)

  • Tunneling current between the tip and sample is used as the signal.
  • Both the tip and sample must be electrically conductive.

1986 - Atomic force microscopy (AFM)

  • Forces (atomic/electrostatic) between the tip and sample are sensed from the deflections of a flexible lever (cantilever).
  • The cantilever tip flies above the sample with a typical distance of tens of nanometers.

1987 - Magnetic Force Microscopy (MFM)[7]

  • Derives from AFM. The magnetic forces between the tip and sample are sensed.[8][9]
  • Image of the magnetic stray field is obtained by scanning the magnetized tip over the sample surface in a raster scan.[10]

MFM components

The main components of an MFM system are: Piezoelectric scanning

  • Moves the sample in an x, y and z directions.
  • Voltage is applied to separate electrodes for different directions. Typically, a 1 volt potential results in 1 to 10 nm displacement.
  • Image is put together by slowly scanning sample surface in a raster fashion.
  • Scan areas range from a few to 200 micrometers.
  • Imaging times range from a few minutes to 30 minutes.
  • Restoring force constants on the cantilever range from 0.01 to 100 N/m depending on the material of the cantilever.

Magnetized tip at one end of a flexible lever (cantilever); generally an AFM probe with a magnetic coating.

  • In the past, tips were made of etched magnetic metals such as nickel.
  • Nowadays, tips are batch fabricated (tip-cantilever) using a combination of micromachining and photolithography. As a result, smaller tips are possible, and better mechanical control of the tip-cantilever is obtained.[11][12][13]
  • Cantilever can be made of single-crystalline silicon, silicon dioxide (SiO2), or silicon nitride (Si3N4). The Si3N4 cantilever-tip modules are usually more durable and have smaller restoring force constants (k).
  • Tips are coated with a thin (< 50 nm) magnetic film (such as Ni or Co), usually of high coercivity, so that the tip magnetic state (or magnetization M) does not change during the imaging.
  • The tip-cantilever module is driven close to the resonance frequency by a piezoelectric crystal with typical frequencies ranging from 10 kHz to 1 MHz.[5]

Scanning procedure

The scanning method when using an MFM is called the "lift height" method.[14] When the tip scans the surface of a sample at close distances (< 100 nm), not only magnetic forces are sensed, but also atomic and electrostatic forces. The lift height method helps to enhance the magnetic contrast through the following:

  • First, the topographic profile of each scan line is measured. That is, the tip is brought into a close proximity of the sample to take AFM measurements.
  • The magnetized tip is then lifted further away from the sample.
  • On the second pass, the magnetic signal is extracted.[15]

Modes of operation

Static (DC) mode

  • The stray field from the sample exerts a force on the magnetic tip. The force is detected by measuring the displacement of the cantilever by reflecting a laser beam from it.
  • The cantilever end is either deflected away or towards the sample surface by a distance Δz = Fz/k (perpendicular to the surface).
  • Static mode corresponds to measurements of the cantilever deflection.
  • Forces in the range of tens of piconewtons are normally measured.

Dynamic (AC) mode

  • For small deflections, the tip-cantilever can be modeled as a damped harmonic oscillator with a proof mass (m) in [kg], an ideal spring constant (k) in [N/m], and a damper (D) in [N·s/m].[16]
  • If an external oscillating force Fz is applied to the cantilever, then the tip will be displaced by an amount z. Moreover, the displacement will also harmonically oscillate, but with a phase shift between applied force and displacement given by:[5][6][9]
F_z=F_o \cos(\omega t), \; z=z_o \cos(\omega t + \theta)\,\!

where the amplitude and phase shifts are given by:

z_o= \frac{{\frac{F_o} {m}}}{\sqrt{(\omega_n^2 - \omega^2) + (\frac{\omega_n \omega} {Q})^2}}, \; \theta=\arctan\left [\frac{\omega_n \omega} {Q(\omega_n^2 - \omega^2)} \right ]\,\!

Here the quality factor of resonance, resonance angular frequency, and damping factor are:

Q=2 \pi \frac{\frac{1} {2} k z_o^2} {\pi D z_o^2 \omega_n} = \frac{1} {2\delta}, \; \omega_n=\sqrt{\frac{k} {m}}, \; \delta=\frac{D} {2\sqrt{mk}}\,\!
  • Dynamic mode of operation refers to measurements of the shifts in the resonance frequency.
  • The cantilever is driven to its resonance frequency and frequency shifts are detected.
  • Assuming small vibration amplitudes (which is generally true in MFM measurements), to a first-order approximation, the resonance frequency can be related to the natural frequency and the force gradient. That is, the shift in the resonance frequency is a result of changes in the spring constant due to the (repelling and attraction) forces acting on the tip.
\omega_r=\omega_n \sqrt{1-\frac{1} {k} \frac{\partial F_z} {\partial z}} \approx 
\omega_n \left (1-\frac{1} {k} \frac{\partial F_z} {\partial z} \right )\,\!

The change in the natural resonance frequency is given by

\Delta f= f_r - f_n \approx -\frac{f_n} {2k} \frac{\partial F_z} {\partial z}\,\!, where f=\frac{\omega} {2\pi}\,\!

For instance, the coordinate system is such that positive z is away from or perpendicular to the sample surface, so that an attractive force would be in the negative direction (F<0), and thus the gradient is positive. Consequently, for attractive forces, the resonance frequency of the cantilever decreases (as described by the equation). The image is encoded in such a way that attractive forces are generally depicted in black color, while repelling forces are coded white.

Image formation

Calculating forces acting on magnetic tips

Analytically, the magnetostatic energy (U) of the tip-sample system can be calculated in one of two ways:[1][5][6][17]

  • One can either compute the magnetization (M) of the tip in the presence of the magnetic stray field (H) of the sample or
  • Compute the magnetization of the sample in the presence of the magnetic stray field of the tip (whichever is easier)

Then, integrate the (dot) product of the magnetization and stray field over the interaction volume as

U=-\mu_o\int\limits_V {\vec M \cdot \vec H\, dV}\,\!

and compute the gradient of the energy over distance to obtain the force F. Assuming that the cantilever deflects along the z-axis, and the tip is magnetized along a certain direction (e.g. the z-axis), then the equations can be simplified to

F_i=\mu_o\int\limits_V {\vec M \cdot \frac{\partial \vec H} {\partial x_i}\, dV}\,\!

Since the tip is magnetized along a specific direction, it will be sensitive to the component of the magnetic stray field of the sample which is aligned to the same direction.

Imaging samples

The MFM can be used to image various magnetic structures including domain walls (Bloch and Neel), closure domains, recorded magnetic bits, etc. Furthermore, motion of domain wall can also be studied in an external magnetic field. MFM images of various materials can be seen in the following books and journal publications:[5][6][18] thin films, nanoparticles, nanowires, permalloy disks and recording media.


The popularity of MFM originates from several reasons, which include:[2]:

  • The sample does not need to be electrically conductive.
  • Measurement can be performed at ambient temperature, in ultra high vacuum (UHV), in liquid environment, and at different temperatures.
  • Measurement is nondestructive to the crystal lattice or structure.
  • Long-range magnetic interactions are not sensitive to surface contamination.
  • No special surface preparation or coating is required.
  • Deposition of thin non-magnetic layers on the sample does not alter the results.
  • Detectable magnetic field intensity, H, is in the range of 10 A/m
  • Detectable magnetic field, B, is in the range of 0.1 gauss (10 microteslas).
  • Typical measured forces are as low as 10−14 N, with the spatial resolutions as low as 20 nm.
  • MFM can be combined with other scanning methods like STM.


There are some shortcomings or difficulties when working with an MFM, such as:

  • The recorded image depends on the type of the tip and magnetic coating, due to tip-sample interactions.
  • Magnetic field of the tip and sample can change each other's magnetization, M, which can result in nonlinear interactions. This hinders image interpretation.
  • Relatively short lateral scanning range (order of hundreds micrometers).
  • Scanning (lift) height affects the image.
  • Housing of the MFM system is important to shield electromagnetic noise (Faraday cage), acoustic noise (anti-vibration tables), air flow (air isolation), and static charge on the sample.


  1. ^ a b c D.A. Bonnell, Scanning Probe Microscopy and Spectroscopy (2000). "7" (2 ed.). Wiley-VCH. ISBN 047124824X. 
  2. ^ a b D. Jiles (1998). "15". Introduction to Magnetism and Magnetic Materials (2 ed.). Springer. ISBN 3540401865. 
  3. ^ L. Abelmann, S. Porthun, et al. (1998). "Comparing the resolution of magnetic force microscopes using the CAMST reference samples". J. Magn. Magn. Mater. 190: 135–147. Bibcode 1998JMMM..190..135A. doi:10.1016/S0304-8853(98)00281-9. 
  4. ^ Nanoscan AG, Quantum Leap in Hard Disk Technology
  5. ^ a b c d e H. Hopster, and H.P. Oepen, Magnetic Microscopy of Nanostructures (2005). "11-12". Springer. 
  6. ^ a b c d M. De Graef, and Y. Zhu (2001). "3". Magnetic Imaging and Its Applications to Materials: Experimental Methods in the Physical Sciences. 36. Academic Press. ISBN 0124759831. 
  7. ^ Magnetic Force Microscopy
  8. ^ Y. Martin and K. Wickramasinghe (1987). "Magnetic Imaging by Force Microscopy with 1000A Resolution". Appl. Phys. Lett. 50 (20): 1455–1457. Bibcode 1987ApPhL..50.1455M. doi:10.1063/1.97800. 
  9. ^ a b U. Hartmann (1999). "Magnetic Force Microscopy". Annu. Rev. Mater. Sci. 29: 53–87. Bibcode 1999AnRMS..29...53H. doi:10.1146/annurev.matsci.29.1.53. 
  10. ^ History of Probing Methods
  11. ^ L. Gao, L.P. Yue, T. Yokota, et al. (2004). "Focused Ion Beam Milled CoPt Magnetic Force Microscopy Tips for High Resolution Domain Images". IEEE Transactions on Magnetics 40 (4): 2194–2196. Bibcode 2004ITM....40.2194G. doi:10.1109/TMAG.2004.829173. 
  12. ^ A. Winkler, T. Mühl, S. Menzel, et al. (2006). "Magnetic Force Microscopy Sensors using Iron-filled Carbon Nanotubes". J. Appl. Phys. 99 (10): 104905. Bibcode 2006JAP....99j4905W. doi:10.1063/1.2195879. 
  13. ^ K. Tanaka, M. Yoshimura, and K. Ueda (2009). "High-Resolution Magnetic Force Microscopy Using Carbon Nanotube Probes Fabricated Directly by Microwave Plasma-Enhanced Chemical Vapor Deposition". J. NanoMaterials 2009: 147204. doi:10.1155/2009/147204. 
  14. ^ Magnetic Force Microscopy (MFM) manual
  15. ^ I. Alvarado, "Procedure to Perform Magnetic Force Microscopy (MFM) with VEECO Dimension 3100 AFM", NRF, 2006
  16. ^ Cantilever Analysis
  17. ^ R. Gomez, E.R. Burke, and I.D. Mayergoyz (1996). "Magnetic Imaging in the Presence of External Fields: Technique and Applications". J. Appl. Phys. 79 (8): 6441–6446. Bibcode 1996JAP....79.6441G. doi:10.1063/1.361966. 
  18. ^ D. Rugar, H.J. Mamin, P. Guenther, et al. (1990). "Magnetic Force Microscopy: General Principles and Application to Longitudinal Recording Media". J. Appl. Phys. 68 (3): 1169–1183. Bibcode 1990JAP....68.1169R. doi:10.1063/1.346713. 

External links

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Atomic force microscope — The atomic force microscope (AFM) or scanning force microscope (SFM) is a very high resolution type of scanning probe microscope, with demonstrated resolution of fractions of a nanometer, more than 1000 times better than the optical diffraction… …   Wikipedia

  • Kelvin probe force microscope — Kelvin probe force microscopy ( KPFM ), also known as surface potential microscopy, is a noncontact variant of atomic force microscopy (AFM) that was [http://dns.ntu PHYS LETT 58 2921 1991.pdf invented] in 1991.… …   Wikipedia

  • Magnetic resonance force microscopy — (MRFM) is an imaging technique that acquires magnetic resonance images (MRI) at nanometer scales, and possibly at atomic scales in the future. MRFM is potentially able to observe protein structures which cannot be seen using X ray crystallography …   Wikipedia

  • Force spectroscopy — is a dynamic analytical technique that allows the study of the mechanical properties of single polymer molecules or proteins, or individual chemical bonds. It is performed by pulling on the system under scrutiny with controlled forces. As a… …   Wikipedia

  • Microscope — This article is about microscopes in general. For light microscopes, see optical microscope. Microscope Us …   Wikipedia

  • Magnetic domain — Several grains of NdFeB with magnetic domains made visible via contrast with a Kerr microscope. A magnetic domain describes a region within a magnetic material which has uniform magnetization. This means that the individual magnetic moments of… …   Wikipedia

  • Scanning Hall probe microscope — The scanning Hall probe microscope (SHPM) is a class of scanning probe microscope which incorporates the accurate sample approach and positioning of the scanning tunnelling microscope with a semiconductor Hall sensor. This combination allows a… …   Wikipedia

  • Magnetic lens — …   Wikipedia

  • microscope — /muy kreuh skohp /, n. 1. an optical instrument having a magnifying lens or a combination of lenses for inspecting objects too small to be seen or too small to be seen distinctly and in detail by the unaided eye. 2. (cap.) Astron. the… …   Universalium

  • Magnetic tweezers — A magnetic tweezer is a scientific instrument for exerting and measuring forces on magnetic particles using a magnetic field gradient. Typical applications are single molecule micromanipulation, rheology of soft matter, and studies of force… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”