- Occam's razor
-
For the aerial theatre company, see Ockham's Razor Theatre Company.
Occam's razor, also known as Ockham's razor, and sometimes expressed in Latin as lex parsimoniae (the law of parsimony, economy or succinctness), is a principle that generally recommends selecting from among competing hypotheses the one that makes the fewest new assumptions.
Contents
Overview
The principle is often summarized as "simpler explanations are, other things being equal, generally better than more complex ones." In practice the principle is usually focused on shifting the burden of proof in discussions.[1] That is, the razor is a principle that suggests we should tend towards simpler theories until we can trade some simplicity for increased explanatory power. Contrary to the popular summary, the simplest available theory is sometimes a less accurate explanation. Philosophers also add that the exact meaning of "simplest" can be nuanced in the first place.[2]
Bertrand Russell offered what he called "a form of Occam's Razor": "Whenever possible, substitute constructions out of known entities for inferences to unknown entities."[3]
Occam's razor is attributed to the 14th-century English logician, theologian and Franciscan friar Father William of Ockham (d'Okham) although the principle was familiar long before.[4] The words attributed to Occam are "entities must not be multiplied beyond necessity" (entia non sunt multiplicanda praeter necessitatem), although these actual words are not to be found in his extant works.[5] The saying is also phrased as pluralitas non est ponenda sine necessitate ("plurality should not be posited without necessity").[6] To quote Isaac Newton, "We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances. Therefore, to the same natural effects we must, so far as possible, assign the same causes."[7]
In science, Occam’s razor is used as a heuristic (general guiding rule or an observation) to guide scientists in the development of theoretical models rather than as an arbiter between published models.[8][9] In the scientific method, Occam's razor is not considered an irrefutable principle of logic, and certainly not a scientific result.[10][11][12][13]
Solomonoff's inductive inference is a mathematical proof[14][15][16][17][18] of Occam's razor, under the assumption that the environment follows some unknown but computable probability distribution.
History
William of Ockham (c. 1285–1349) is remembered as an influential nominalist though his popular fame as a great logician rests chiefly on the maxim attributed to him and known as Ockham's razor. The term razor (the German "Ockhams Messer" translates to "Occam's knife") refers to distinguishing between two theories either by "shaving away" unnecessary assumptions or cutting apart two similar theories.
This maxim seems to represent the general tendency of Occam's philosophy, but it has not been found in any of his writings. His nearest pronouncement seems to be Numquam ponenda est pluralitas sine necessitate [Plurality must never be posited without necessity], which occurs in his theological work on the Sentences of Peter Lombard (Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi (ed. Lugd., 1495), i, dist. 27, qu. 2, K).
In his Summa Totius Logicae, i. 12, Ockham cites the principle of economy, Frustra fit per plura quod potest fieri per pauciora [It is futile to do with more things that which can be done with fewer]. |Thorburn, 1918, pp. 352–3; Kneale and Kneale, 1962, p. 243.}}
The origins of what has come to be known as Occam's razor are traceable to the works of earlier philosophers such as Maimonides (Rabbi Moshe ben Maimon, 1138–1204), John Duns Scotus (1265–1308), and even Aristotle (384–322 BC) (Charlesworth 1956).
The term "Occam's razor" first appeared in 1852 in the works of Sir William Hamilton, 9th Baronet (1788–1856), centuries after Ockham's death. Ockham did not invent this "razor"; its association with him may be due to the frequency and effectiveness with which he used it (Ariew 1976). Ockham stated the principle in various ways, but the most popular version was written by John Ponce from Cork in 1639 (Meyer 1957).
For Ockham, the only truly necessary entity is God; everything else, the whole of creation, is radically contingent through and through.[19]
Justifications
Beginning in the 20th century, epistemological justifications based on induction, logic, pragmatism, and especially probability theory have become more popular among philosophers.
Aesthetic
Prior to the 20th century, it was a commonly-held belief that nature itself was simple and that simpler hypotheses about nature were thus more likely to be true. This notion was deeply rooted in the aesthetic value simplicity holds for human thought and the justifications presented for it often drew from theology. Thomas Aquinas made this argument in the 13th century, writing, "If a thing can be done adequately by means of one, it is superfluous to do it by means of several; for we observe that nature does not employ two instruments [if] one suffices."[20]
Linguistic
Simon argued that whether something is simple or complex depends on the way we choose to describe it.[21] Quine proposed his Maxim of Shallow Analysis which says that we should uncover no more structure than necessary in order to show that a sentence is grammatical.[22]
Empirical
Occam's razor has gained strong empirical support as far as helping to converge on better theories (see "Applications" section below for some examples).
Even if Occam's razor is empirically justified, so too is the need to use other "theory selecting" methods in science. Such other scientific methods are what support the razor's validity as a tool in the first place. This is because measuring the razor's (or any method's) ability to select between theories requires the use of different, reliable "theory selecting" methods for corroboration.
One should note the related concept of overfitting, where excessively complex models are affected by statistical noise (a problem also known as the bias-variance trade-off), whereas simpler models may capture the underlying structure better and may thus have better predictive performance. It is, however, often difficult to deduce which part of the data is noise (cf. model selection, test set, minimum description length, Bayesian inference, etc.).
Testing the razor
The razor's claim that "simpler explanations are, other things being equal, generally better than more complex ones" is amenable to empirical testing. The procedure to test this hypothesis would compare the track records of simple and comparatively complex explanations. The validity of Occam's razor as a tool would then have to be rejected if the more complex explanations were more often correct than the less complex ones (while the converse would lend support to its use).
In the history of competing explanations this is certainly not the case. At least, not generally (some increases in complexity are sometimes necessary), and so there remains a justified general bias towards the simpler of two competing explanations. To understand why, consider that, for each accepted explanation of a phenomenon, there is always an infinite number of possible, more complex, and ultimately incorrect alternatives. This is so because one can always burden failing explanations with ad-hoc hypotheses. Ad-hoc hypotheses are justifications which prevent theories from being falsified. Even other empirical criteria like consilience can never truly eliminate such explanations as competition. Each true explanation, then, may have had many alternatives that were simpler and false, but also an infinite number of alternatives that were more complex and false.
Put another way, any new, and even more complex theory can still possibly be true. For example: If an individual makes supernatural claims that Leprechauns were responsible for breaking a vase, the simpler explanation would be that he is mistaken, but ongoing ad-hoc justifications (e.g. "And, that's not me on film, they tampered with that too") successfully prevent outright falsification. This endless supply of elaborate competing explanations cannot be ruled out—but by using Occam's Razor.[23][24][25]
Practical considerations and pragmatism
See also: pragmatism and problem of inductionThe common form of the razor, used to distinguish between equally explanatory hypotheses, may be supported by the practical fact that simpler theories are easier to understand.
Some argue that Occam's razor is not a theory at all (in the classic sense of being an inference-driven model); rather, it may be a heuristic maxim for choosing among other theories and instead underlies induction.[citation needed]
Alternatively, if we want to have reasonable discussion we may be practically forced to accept Occam's razor in the same way we are simply forced to accept the laws of thought and inductive reasoning (given the problem of induction). As philosopher Elliott Sober explains (see below) not even Reason itself can be justified on any reasonable grounds. This has been taken to prove that the accepted bedrock premises of understanding are necessarily unjustifiable by pure reason; we must start with first principles of some kind (otherwise an infinite regress occurs).
The pragmatist may go on, as David Hume did on the topic induction, that there is no satisfying alternative to granting this premise. Though one may claim that Occam's razor is invalid as a premise helping to regulate theories, putting this doubt into practice would mean doubting whether every step forward will result in locomotion or a nuclear explosion. In other words still: "What's the alternative?"
Mathematical
There have been attempts to derive Occam's Razor from probability theory, notable attempts made by Harold Jeffreys and E. T. Jaynes. Using Bayesian reasoning, a simple theory is preferred to a complicated one because of a higher prior probability. William H. Jeffreys and Berger stated that "as a consequence of the fact that a hypothesis with fewer adjustable parameters will automatically have an enhanced posterior probability, due to the fact that the predictions it makes are sharp..."[26]
Other views
Karl Popper
Karl Popper argues that a preference for simple theories need not appeal to practical or aesthetic considerations. Our preference for simplicity may be justified by its falsifiability criterion: We prefer simpler theories to more complex ones "because their empirical content is greater; and because they are better testable" (Popper 1992). The idea here is that a simple theory applies to more cases than a more complex one, and is thus more easily falsifiable. This is again comparing a simple theory to a more complex theory where both explain the data equally well.
Elliott Sober
The philosopher of science Elliott Sober once argued along the same lines as Popper, tying simplicity with "informativeness": The simplest theory is the more informative one, in the sense that less information is required in order to answer one's questions (Sober 1975). He has since rejected this account of simplicity, purportedly because it fails to provide an epistemic justification for simplicity. He now expresses views to the effect that simplicity considerations (and considerations of parsimony in particular) do not count unless they reflect something more fundamental. Philosophers, he suggests, may have made the error of hypostatizing simplicity (i.e. endowed it with a sui generis existence), when it has meaning only when embedded in a specific context (Sober 1992). If we fail to justify simplicity considerations on the basis of the context in which we make use of them, we may have no non-circular justification: "just as the question 'why be rational?' may have no non-circular answer, the same may be true of the question 'why should simplicity be considered in evaluating the plausibility of hypotheses?'" (Sober 2001)
Richard Swinburne
Richard Swinburne argues for simplicity on logical grounds:
... the simplest hypothesis proposed as an explanation of phenomena is more likely to be the true one than is any other available hypothesis, that its predictions are more likely to be true than those of any other available hypothesis, and that it is an ultimate a priori epistemic principle that simplicity is evidence for truth.—Swinburne 1997Since our choice of theory cannot be determined by data (see Underdetermination and Quine-Duhem thesis), we must rely on some criterion to determine which theory to use. Since it is absurd to have no logical method by which to settle on one hypothesis amongst an infinite number of equally data-compliant hypotheses, we should choose the simplest theory: "...either science is irrational [in the way it judges theories and predictions probable] or the principle of simplicity is a fundamental synthetic a priori truth" (Swinburne 1997).
Ludwig Wittgenstein
From the Tractatus Logico-Philosophicus:
- 3.328 If a sign is not necessary then it is meaningless. That is the meaning of Occam's razor.
- (If everything in the symbolism works as though a sign had meaning, then it has meaning.)
- 4.04 In the proposition there must be exactly as many things distinguishable as there are in the state of affairs which it represents. They must both possess the same logical (mathematical) multiplicity (cf. Hertz's Mechanics, on Dynamic Models).
- 5.47321 Occam's razor is, of course, not an arbitrary rule nor one justified by its practical success. It simply says that unnecessary elements in a symbolism mean nothing. Signs which serve one purpose are logically equivalent, signs which serve no purpose are logically meaningless.
and on the related concept of "simplicity":
- 6.363 The procedure of induction consists in accepting as true the simplest law that can be reconciled with our experiences.
Applications
Science and the scientific method
In science, Occam’s razor is used as a heuristic (rule of thumb) to guide scientists in the development of theoretical models rather than as an arbiter between published models.[8][9] In physics, parsimony was an important heuristic in the formulation of special relativity by Albert Einstein,[27][28] the development and application of the principle of least action by Pierre Louis Maupertuis and Leonhard Euler,[29] and the development of quantum mechanics by Ludwig Boltzmann, Max Planck, Werner Heisenberg and Louis de Broglie.[9][30] In chemistry, Occam’s razor is often an important heuristic when developing a model of a reaction mechanism.[31][32] However, while it is useful as a heuristic in developing models of reaction mechanisms, it has been shown to fail as a criterion for selecting among some selected published models.[9] In this context, Einstein himself expressed a certain caution when he formulated Einstein's Constraint: "Everything should be kept as simple as possible, but no simpler." Elsewhere, Einstein harks back to the theological roots of the razor, with his famous put-down: "The Good Lord may be subtle, but he is not malicious."
In the scientific method, parsimony is an epistemological, metaphysical or heuristic preference, not an irrefutable principle of logic, and certainly not a scientific result.[10][11][12][33] As a logical principle, Occam's razor would demand that scientists accept the simplest possible theoretical explanation for existing data. However, science has shown repeatedly that future data often supports more complex theories than existing data. Science tends to prefer the simplest explanation that is consistent with the data available at a given time, but history shows that these simplest explanations often yield to complexities as new data become available.[8][11] Science is open to the possibility that future experiments might support more complex theories than demanded by current data and is more interested in designing experiments to discriminate between competing theories than favoring one theory over another based merely on philosophical principles.[10][11][12][13]
When scientists use the idea of parsimony, it only has meaning in a very specific context of inquiry. A number of background assumptions are required for parsimony to connect with plausibility in a particular research problem. The reasonableness of parsimony in one research context may have nothing to do with its reasonableness in another. It is a mistake to think that there is a single global principle that spans diverse subject matter.[13]
As a methodological principle, the demand for simplicity suggested by Occam’s razor cannot be generally sustained. Occam’s razor cannot help toward a rational decision between competing explanations of the same empirical facts. One problem in formulating an explicit general principle is that complexity and simplicity are perspective notions whose meaning depends on the context of application and the user’s prior understanding. In the absence of an objective criterion for simplicity and complexity, Occam’s razor itself does not support an objective epistemology.[12]
The problem of deciding between competing explanations for empirical facts cannot be solved by formal tools. Simplicity principles can be useful heuristics in formulating hypotheses, but they do not make a contribution to the selection of theories. A theory that is compatible with one person’s world view will be considered simple, clear, logical, and evident, whereas what is contrary to that world view will quickly be rejected as an overly complex explanation with senseless additional hypotheses. Occam’s razor, in this way, becomes a “mirror of prejudice.”[12]
It has been suggested that Occam’s razor is a widely accepted example of extraevidential consideration, even though it is entirely a metaphysical assumption. There is little empirical evidence that the world is actually simple or that simple accounts are more likely than complex ones to be true.[34]
Most of the time, Occam’s razor is a conservative tool, cutting out crazy, complicated constructions and assuring that hypotheses are grounded in the science of the day, thus yielding ‘normal’ science: models of explanation and prediction. There are, however, notable exceptions where Occam’s razor turns a conservative scientist into a reluctant revolutionary. For example, Max Planck interpolated between the Wien and Jeans radiation laws used an Occam’s razor logic to formulate the quantum hypothesis, and even resisting that hypothesis as it became more obvious that it was correct.[9]
However, on many occasions Occam's razor has stifled or delayed scientific progress.[12] For example, appeals to simplicity were used to deny the phenomena of meteorites, ball lightning, continental drift, and reverse transcriptase. It originally rejected DNA as the carrier of genetic information in favor of proteins, since proteins provided the simpler explanation. Theories that reach far beyond the available data are rare, but general relativity provides one example.
In hindsight, one can argue that it is simpler to consider DNA as the carrier of genetic information, because it uses a smaller number of building blocks (four nitrogenous bases). However, during the time that proteins were the favored genetic medium, it seemed like a more complex hypothesis to confer genetic information in DNA rather than proteins.
One can also argue (also in hindsight) for atomic building blocks for matter, because it provides a simpler explanation for the observed reversibility of both mixing and chemical reactions as simple separation and re-arrangements of the atomic building blocks. However, at the time, the atomic theory was considered more complex because it inferred the existence of invisible particles which had not been directly detected. Ernst Mach and the logical positivists rejected the atomic theory of John Dalton, until the reality of atoms was more evident in Brownian motion, as explained by Albert Einstein.[35]
In the same way, hindsight argues that postulating the aether is more complex than transmission of light through a vacuum. However, at the time, all known waves propagated through a physical medium, and it seemed simpler to postulate the existence of a medium rather than theorize about wave propagation without a medium. Likewise, Newton's idea of light particles seemed simpler than Christiaan Huygens's idea of waves, so many favored it; however in this case, as it turned out, neither the wave- nor the particle-explanation alone suffices, since light behaves like waves as well as like particles (wave–particle duality).
Three axioms presupposed by the scientific method are realism (the existence of objective reality), the existence of natural laws, and the constancy of natural law. Rather than depend on provability of these axioms, science depends on the fact that they have not been objectively falsified. Occam’s razor and parsimony support, but do not prove these general axioms of science. The general principle of science is that theories (or models) of natural law must be consistent with repeatable experimental observations. This ultimate arbiter (selection criterion) rests upon the axioms mentioned above.[11]
There are many examples where Occam’s razor would have picked the wrong theory given the available data. Simplicity principles are useful philosophical preferences for choosing a more likely theory from among several possibilities that are each consistent with available data. A single instance of Occam’s razor picking a wrong theory falsifies the razor as a general principle.[11]
If multiple models of natural law make exactly the same testable predictions, they are equivalent and there is no need for parsimony to choose one that is preferred. For example, Newtonian, Hamiltonian, and Lagrangian classical mechanics are equivalent. Physicists have no interest in using Occam’s razor to say the other two are wrong. Likewise, there is no demand for simplicity principles to arbitrate between wave and matrix formulations of quantum mechanics. Science often does not demand arbitration or selection criteria between models which make the same testable predictions.[11]
Michael Lee and others[36] provide cases where a parsimonious approach does not guarantee a correct conclusion and, if based on incorrect working hypotheses or interpretations of incomplete data, may even strongly support a false conclusion. He warns "When parsimony ceases to be a guideline and is instead elevated to an ex cathedra pronouncement, parsimony analysis ceases to be science."
Biology
Biologists or philosophers of biology use Occam's razor in either of two contexts both in evolutionary biology: the units of selection controversy and systematics. George C. Williams in his book Adaptation and Natural Selection (1966) argues that the best way to explain altruism among animals is based on low level (i.e. individual) selection as opposed to high level group selection. Altruism is defined as behavior that is beneficial to the group but not to the individual, and group selection is thought by some to be the evolutionary mechanism that selects for altruistic traits. Others posit individual selection as the mechanism which explains altruism solely in terms of the behaviors of individual organisms acting in their own self interest without regard to the group. The basis for Williams's contention is that of the two, individual selection is the more parsimonious theory. In doing so he is invoking a variant of Occam's razor known as Lloyd Morgan's Canon: "In no case is an animal activity to be interpreted in terms of higher psychological processes, if it can be fairly interpreted in terms of processes which stand lower in the scale of psychological evolution and development" (Morgan 1903).
However, more recent biological analyses, such as Richard Dawkins's The Selfish Gene, have contended that Williams's view is not the simplest and most basic. Dawkins argues the way evolution works is that the genes that are propagated in most copies will end up determining the development of that particular species, i.e., natural selection turns out to select specific genes, and this is really the fundamental underlying principle, that automatically gives individual and group selection as emergent features of evolution.
Zoology provides an example. Muskoxen, when threatened by wolves, will form a circle with the males on the outside and the females and young on the inside. This as an example of a behavior by the males that seems to be altruistic. The behavior is disadvantageous to them individually but beneficial to the group as a whole and was thus seen by some to support the group selection theory.
However, a much better explanation immediately offers itself once one considers that natural selection works on genes. If the male musk ox runs off, leaving his offspring to the wolves, his genes will not be propagated. If however he takes up the fight his genes will live on in his offspring. And thus the "stay-and-fight" gene prevails. This is an example of kin selection. An underlying general principle thus offers a much simpler explanation, without retreating to special principles as group selection.
Systematics is the branch of biology that attempts to establish genealogical relationships among organisms. It is also concerned with their classification. There are three primary camps in systematics; cladists, pheneticists, and evolutionary taxonomists. The cladists hold that genealogy alone should determine classification and pheneticists contend that similarity over propinquity of descent is the determining criterion while evolutionary taxonomists claim that both genealogy and similarity count in classification.
It is among the cladists that Occam's razor is to be found, although their term for it is cladistic parsimony. Cladistic parsimony (or maximum parsimony) is a method of phylogenetic inference in the construction of types of phylogenetic trees (more specifically, cladograms). Cladograms are branching, tree-like structures used to represent lines of descent based on one or more evolutionary change (s). Cladistic parsimony is used to support the hypothesis (es) that require the fewest evolutionary changes. For some types of tree, it will consistently produce the wrong results regardless of how much data is collected (this is called long branch attraction). For a full treatment of cladistic parsimony, see Elliott Sober's Reconstructing the Past: Parsimony, Evolution, and Inference (1988). For a discussion of both uses of Occam's razor in Biology see Elliott Sober's article Let's Razor Ockham's Razor (1990).
Other methods for inferring evolutionary relationships use parsimony in a more traditional way. Likelihood methods for phylogeny use parsimony as they do for all likelihood tests, with hypotheses requiring few differing parameters (i.e., numbers of different rates of character change or different frequencies of character state transitions) being treated as null hypotheses relative to hypotheses requiring many differing parameters. Thus, complex hypotheses must predict data much better than do simple hypotheses before researchers reject the simple hypotheses. Recent advances employ information theory, a close cousin of likelihood, which uses Occam's razor in the same way.
Francis Crick has commented on potential limitations of Occam's razor in biology. He advances the argument that because biological systems are the products of (an on-going) natural selection, the mechanisms are not necessarily optimal in an obvious sense. He cautions: "While Ockham's razor is a useful tool in the physical sciences, it can be a very dangerous implement in biology. It is thus very rash to use simplicity and elegance as a guide in biological research."[37]
In biogeography, parsimony is used to infer ancient migrations of species or populations by observing the geographic distribution and relationships of existing organisms. Given the phylogenetic tree, ancestral migrations are inferred to be those that require the minimum amount of total movement.
Medicine
When discussing Occam's razor in contemporary medicine, doctors and philosophers of medicine speak of diagnostic parsimony. Diagnostic parsimony advocates that when diagnosing a given injury, ailment, illness, or disease a doctor should strive to look for the fewest possible causes that will account for all the symptoms. This philosophy is one of several demonstrated in the popular medical adage "when you are in Texas and you hear hoofbeats, think horses, not zebras." While diagnostic parsimony might often be beneficial, credence should also be given to the counter-argument modernly known as Hickam's dictum, which succinctly states that "patients can have as many diseases as they damn well please." It is often statistically more likely that a patient has several common diseases, rather than having a single rarer disease which explains their myriad symptoms. Also, independently of statistical likelihood, some patients do in fact turn out to have multiple diseases, which by common sense nullifies the approach of insisting to explain any given collection of symptoms with one disease. These misgivings emerge from simple probability theory—which is already taken into account in many modern variations of the razor—and from the fact that the loss function is much greater in medicine than in most of general science. Because misdiagnosis can result in the loss of a person's health and potentially life, it is considered better to test and pursue all reasonable theories even if there is some theory that appears the most likely.
Diagnostic parsimony and the counter-balance it finds in Hickam's dictum have very important implications in medical practice. Any set of symptoms could be indicative of a range of possible diseases and disease combinations; though at no point is a diagnosis rejected or accepted just on the basis of one disease appearing more likely than another, the continuous flow of hypothesis formulation, testing and modification benefits greatly from estimates regarding which diseases (or sets of diseases) are relatively more likely to be responsible for a set of symptoms, given the patient's environment, habits, medical history and so on. For example, if a hypothetical patient's immediately apparent symptoms include fatigue and cirrhosis and they test negative for Hepatitis C, their doctor might formulate a working hypothesis that the cirrhosis was caused by their drinking problem, and then seek symptoms and perform tests to formulate and rule out hypotheses as to what has been causing the fatigue; but if the doctor were to further discover that the patient's breath inexplicably smells of garlic and they are suffering from pulmonary edema, they might decide to test for the relatively rare condition of Selenium poisoning.
Religion
In the philosophy of religion, Occam's razor is sometimes applied to the existence of God; if the concept of a God does not help to explain the universe better, then the idea is that atheism should be preferred (Schmitt 2005). Some such arguments are based on the assertion that belief in God requires more complex assumptions to explain the universe than non-belief (e.g. the Ultimate Boeing 747 gambit). On the other hand, there are various arguments in favour of a God which attempt to establish a God as a useful explanation. Philosopher Del Ratzsch[38] suggests that the application of the razor to God may not be so simple, least of all when we are comparing that hypothesis with theories postulating multiple invisible universes.[39]
God as beside the razor
Main article: Existence of GodRather than argue for the necessity of God, some theists consider their belief to be based on grounds independent of, or prior to, reason, making Occam's razor irrelevant. This was the stance of Søren Kierkegaard, who viewed belief in God as a leap of faith which sometimes directly opposed reason.[40] This is also the same basic view of Clarkian Presuppositional apologetics, with the exception that Clark never thought the leap of faith was contrary to reason. (See also: Fideism). In a different vein, Alvin Plantinga and others have argued for reformed epistemology, the view that God's existence can properly be assumed as part of a Christian's epistemological structure (see also basic beliefs). Yet another school of thought, Van Tillian presuppositional apologetics, claims that God's existence is the transcendentally necessary prior condition to the intelligibility of all human experience and thought. In other words, proponents of this view hold that there is no other viable option to ultimately explain any fact of human experience or knowledge, let alone a simpler one.
William of Ockham himself was a theist. He believed in God, and thus in some validity of scripture; he writes that “nothing ought to be posited without a reason given, unless it is self-evident (literally, known through itself) or known by experience or proved by the authority of Sacred Scripture.”[41] In Ockham's view, an explanation which does not harmonize with reason, experience or the aforementioned sources cannot be considered valid. However, unlike many theologians of his time, Ockham did not believe God could be logically proven with arguments. In fact, he thought that science actually seemed to eliminate God according to the Razor's criteria. To Ockham, science was a matter of discovery, but theology was a matter of revelation and faith (e.g. some sort of Non-overlapping magisteria).[42] He explains: “only faith gives us access to theological truths. The ways of God are not open to reason, for God has freely chosen to create a world and establish a way of salvation within it apart from any necessary laws that human logic or rationality can uncover.”[43]
Philosophy of mind
Probably the first person to make use of the principle was Ockham himself. He writes "The source of many errors in philosophy is the claim that a distinct signified thing always corresponds to a distinct word in such a way that there are as many distinct entities being signified as there are distinct names or words doing the signifying." (Summula Philosophiae Naturalis III, chap. 7, see also Summa Totus Logicae Bk I, C.51). We are apt to suppose that a word like "paternity" signifies some "distinct entity", because we suppose that each distinct word signifies a distinct entity. This leads to all sorts of absurdities, such as "a column is to the right by to-the-rightness", "God is creating by creation, is good by goodness, is just by justice, is powerful by power", "an accident inheres by inherence", "a subject is subjected by subjection", "a suitable thing is suitable by suitability", "a chimera is nothing by nothingness", "a blind thing is blind by blindness", "a body is mobile by mobility". We should say instead that a man is a father because he has a son (Summa C.51).
Another application of the principle is to be found in the work of George Berkeley (1685–1753). Berkeley was an idealist who believed that all of reality could be explained in terms of the mind alone. He famously invoked Occam's razor against Idealism's metaphysical competitor, materialism, claiming that matter was not required by his metaphysic and was thus eliminable. One problem with this argument is that the razor is easily turned around on Berkeley's Idealism itself, which is premised on the notion of a supernatural entity constantly projecting ideas into the observer's mind to give the impression of matter. Invoking such a supposition to explain the appearance of matter is far more unnecessary than the supposition that matter itself is real.
In the 20th century Philosophy of Mind, Occam's razor found a champion in J. J. C. Smart, who in his article "Sensations and Brain Processes" (1959) claimed Occam's razor as the basis for his preference of the mind-brain identity theory over mind-body dualism. Dualists claim that there are two kinds of substances in the universe: physical (including the body) and mental, which is nonphysical. In contrast identity theorists claim that everything is physical, including consciousness, and that there is nothing nonphysical. The basis for the materialist claim is that of the two competing theories, dualism and mind-brain identity, the identity theory is the simpler since it commits to fewer entities. Smart was criticized for his use of the razor and ultimately retracted his advocacy of it in this context.
Paul Churchland (1984) cites Occam's razor as the first line of attack against dualism, but admits that by itself it is inconclusive. The deciding factor for Churchland is the greater explanatory prowess of a materialist position in the Philosophy of Mind as informed by findings in neurobiology.
Dale Jacquette (1994) claims that Occam's razor is the rationale behind eliminativism and reductionism in the philosophy of mind. Eliminativism is the thesis that the ontology of folk psychology including such entities as "pain", "joy", "desire", "fear", etc., are eliminable in favor of an ontology of a completed neuroscience.
Penal ethics
In penal theory and the philosophy of punishment, parsimony refers specifically to taking care in the distribution of punishment in order to avoid excessive punishment. In the utilitarian approach to the philosophy of punishment, Jeremy Bentham's "parsimony principle" states that any punishment greater than is required to achieve its end is unjust. The concept is related but not identical to the legal concept of proportionality. Parsimony is a key consideration of the modern restorative justice, and is a component of utilitarian approaches to punishment, as well as the prison abolition movement. Bentham believed that true parsimony would require punishment to be individualised to take account of the sensibility of the individual—an individual more sensitive to punishment should be given a proportionately lesser one, since otherwise needless pain would be inflicted. Later utilitarian writers have tended to abandon this idea, in large part due to the impracticality of determining each alleged criminal's relative sensitivity to specific punishments.[44]
Probability theory and statistics
One intuitive justification of Occam's razor's admonition against unnecessary hypotheses is a direct result of basic probability theory. By definition, all assumptions introduce possibilities for error; if an assumption does not improve the accuracy of a theory, its only effect is to increase the probability that the overall theory is wrong.
There are various papers in scholarly journals deriving formal versions of Occam's razor from probability theory and applying it in statistical inference, and also of various criteria for penalizing complexity in statistical inference. Recent papers have suggested a connection between Occam's razor and Kolmogorov complexity.
One of the problems with the original formulation of the principle is that it only applies to models with the same explanatory power (i.e. prefer the simplest of equally good models). A more general form of Occam's razor can be derived from Bayesian model comparison and Bayes factors, which can be used to compare models that don't fit the data equally well. These methods can sometimes optimally balance the complexity and power of a model. Generally the exact Ockham factor is intractable but approximations such as Akaike Information Criterion, Bayesian Information Criterion, Variational Bayes, False discovery rate and Laplace approximation are used. Many artificial intelligence researchers are now employing such techniques.
William H. Jefferys and James O. Berger (1991) generalise and quantify the original formulation's "assumptions" concept as the degree to which a proposition is unnecessarily accommodating to possible observable data. The model they propose balances the precision of a theory's predictions against their sharpness; theories which sharply made their correct predictions are preferred over theories which would have accommodated a wide range of other possible results. This, again, reflects the mathematical relationship between key concepts in Bayesian inference (namely marginal probability, conditional probability and posterior probability).
The statistical view leads to a more rigorous formulation of the razor than previous philosophical discussions. In particular, it shows that "simplicity" must first be defined in some way before the razor may be used, and that this definition will always be subjective.[why?] For example, in the Kolmogorov-Chaitin Minimum description length approach, the subject must pick a Turing machine whose operations describe the basic operations believed to represent "simplicity" by the subject. However one could always choose a Turing machine with a simple operation that happened to construct one's entire theory and would hence score highly under the razor. This has led to two opposing views of the objectivity of Occam's razor.
Objective razor
The minimum instruction set of a Universal Turing machine requires approximately the same length description across different formulations, and is small compared to the Kolmogorov complexity of most practical theories. Marcus Hutter has used this consistency to define a "natural" Turing machine[45] of small size as the proper basis for excluding arbitrarily complex instruction sets in the formulation of razors. Describing the program for the universal program as the "hypothesis", and the representation of the evidence as program data, it has been formally proven under ZF that "the sum of the log universal probability of the model plus the log of the probability of the data given the model should be minimized."[46] Interpreting this as minimising the total length of a two-part message encoding model followed by data given model gives us the Minimum Message Length (MML) principle[47][48]
One possible conclusion from mixing the concepts of Kolmogorov complexity and Occam's razor is that an ideal data compressor would also be a scientific explanation/formulation generator. Some attempts have been made to re-derive known laws from considerations of simplicity or compressibility.[49][50]
According to Jürgen Schmidhuber, the appropriate mathematical theory of Occam's razor already exists, namely, Ray Solomonoff's theory of optimal inductive inference[51] and its extensions.[52] See discussions in[53] for the subtle distinctions between the algorithmic probability (ALP) work of Ray Solomonoff and the Minimum Message Length work of Chris Wallace, and see[54] both for such discussions and also (in sec. 4) discussions of MML and Ockham's razor. For a specific example of MML as Ockham's razor in the problem of decision tree induction, see.[55]
In literature and writing
Occam's razor has been recommended as a measure of how good the plot of a novel is. Simple and logical plots are easy to explain and this enhances the experience of the reader. The writer is also less likely to make an error while explaining the plot to the reader.[56]
Controversial aspects of the razor
Occam's razor is not an embargo against the positing of any kind of entity, or a recommendation of the simplest theory come what may.[57]
The other things in question are the evidential support for the theory.[58] Therefore, according to the principle, a simpler but less correct theory should not be preferred over a more complex but more correct one. It is this fact which gives the lie to the common misinterpretation of Occam's razor that "the simplest" one is usually the correct one."
For instance, classical physics is simpler than more recent theories; nonetheless it should not be preferred over them, because it is demonstrably wrong in certain respects.
Occam's razor is used to adjudicate between theories that have already passed 'theoretical scrutiny' tests, and which are equally well-supported by the evidence.[59] Furthermore, it may be used to prioritize empirical testing between two equally plausible but unequally testable hypotheses; thereby minimizing costs and wastes while increasing chances of falsification of the simpler-to-test hypothesis.
Another contentious aspect of the razor is that a theory can become more complex in terms of its structure (or syntax), while its ontology (or semantics) becomes simpler, or vice versa.[60] Quine, in a discussion on definition, referred to these two perspectives as "economy of practical expression" and "economy in grammar and vocabulary", respectively.[61] The theory of relativity is often given as an example of the proliferation of complex words to describe a simple concept.
Galileo Galilei lampooned the misuse of Occam's razor in his Dialogue. The principle is represented in the dialogue by Simplicio. The telling point that Galileo presented ironically was that if you really wanted to start from a small number of entities, you could always consider the letters of the alphabet as the fundamental entities, since you could certainly construct the whole of human knowledge out of them.
Anti-razors
Occam's razor has met some opposition from people who have considered it too extreme or rash. Walter of Chatton was a contemporary of William of Ockham (1287–1347) who took exception to Occam's razor and Ockham's use of it. In response he devised his own anti-razor: "If three things are not enough to verify an affirmative proposition about things, a fourth must be added, and so on." Although there have been a number of philosophers who have formulated similar anti-razors since Chatton's time, no one anti-razor has perpetuated in as much notoriety as Chatton's anti-razor, although this could be the case of the Late Renaissance Italian motto of unknown attribution Se non è vero, è ben trovato ("Even if it is not true, it is well conceived") when referred to a particularly artful explanation.
Anti-razors have also been created by Gottfried Wilhelm Leibniz (1646–1716), Immanuel Kant (1724–1804), and Karl Menger. Leibniz's version took the form of a principle of plenitude, as Arthur Lovejoy has called it, the idea being that God created the most varied and populous of possible worlds. Kant felt a need to moderate the effects of Occam's razor and thus created his own counter-razor: "The variety of beings should not rashly be diminished."[62]
Karl Menger found mathematicians to be too parsimonious with regard to variables so he formulated his Law Against Miserliness which took one of two forms: "Entities must not be reduced to the point of inadequacy" and "It is vain to do with fewer what requires more." See "Ockham's Razor and Chatton's Anti-Razor" (1984) by Armand Maurer. A less serious, but (some might say) even more extremist anti-razor is Pataphysics, the "science of imaginary solutions" invented by Alfred Jarry (1873–1907). Perhaps the ultimate in anti-reductionism, "Pataphysics seeks no less than to view each event in the universe as completely unique, subject to no laws but its own." Variations on this theme were subsequently explored by the Argentinean writer Jorge Luis Borges in his story/mock-essay Tlön, Uqbar, Orbis Tertius. There is also Crabtree's Bludgeon, which takes a cynical view that "[n]o set of mutually inconsistent observations can exist for which some human intellect cannot conceive a coherent explanation, however complicated."
See also
- Algorithmic information theory
- Bayesian inference
- Buridan's ass
- Ceteris paribus
- Common sense
- Cladistics
- Crabtree's Bludgeon
- Curve fitting
- Data compression
- Deus ex machina
- Eliminative materialism
- Egyptian fractions
- Falsifiability
- Greedy reductionism
- Hanlon's razor
- KISS principle
- Kolmogorov complexity
- Metaphysical naturalism
- Minimum description length
- Minimum message length
- Model selection
- Morgan's canon
- Murphy's law
- Occam programming language
- Overfitting
- Philosophy of science
- Plato's beard
- Poverty of the stimulus
- Principle of least astonishment
- Pseudoscience
- Rationalism
- Razor (philosophy)
- Reference class problem
- Regress argument
- Scientific method
- Scientific reductionism
- Scientific skepticism
- Simplicity
- Stepwise regression
- Turtles all the way down
- Willi Hennig
References
- ^ "The aim of appeals to simplicity in such contexts seem to be more about shifting the burden of proof, and less about refuting the less simple theory outright." Alan Baker, Simplicity, Stanford Encyclopedia of Philosophy, (2004),http://plato.stanford.edu/entries/simplicity/
- ^ "In analyzing simplicity, it can be difficult to keep its two facets—elegance and parsimony—apart. Principles such as Occam's razor are frequently stated in a way which is ambiguous between the two notions...While these two facets of simplicity are frequently conflated, it is important to treat them as distinct. One reason for doing so is that considerations of parsimony and of elegance typically pull in different directions." Alan Baker, Simplicity, Stanford Encyclopedia of Philosophy, (2004),http://plato.stanford.edu/entries/simplicity/
- ^ Standford Encyclopedia of Philosophy, 'Logical Construction'
- ^ Bauer, Laurie (2007). The linguistics student's handbook. Edinburgh: Edinburgh University Press. p. 155.
- ^ Flew, Antony (1979). A dictionary of philosophy. London: Pan Books. p. 253.
- ^ "Ockham’s razor". Encyclopædia Britannica. Encyclopædia Britannica Online. 2010. http://www.britannica.com/EBchecked/topic/424706/Ockhams-razor. Retrieved 12 June 2010.
- ^ Hawking (2003). On the Shoulders of Giants. Running Press. p. 731. ISBN 076241698x. http://books.google.com/?id=0eRZr_HK0LgC&pg=PA731.
- ^ a b c Hugh G. Gauch, Scientific Method in Practice, Cambridge University Press, 2003, ISBN 0-521-01708-4, 9780521017084
- ^ a b c d e Roald Hoffmann, Vladimir I. Minkin, Barry K. Carpenter, Ockham's Razor and Chemistry, HYLE—International Journal for Philosophy of Chemistry, Vol. 3, pp. 3–28, (1997).
- ^ a b c Alan Baker, Simplicity, Stanford Encyclopedia of Philosophy, (2004) http://plato.stanford.edu/entries/simplicity/
- ^ a b c d e f g Courtney A, Courtney M: Comments Regarding "On the Nature Of Science," Physics in Canada, Vol. 64, No. 3 (2008), p7-8.
- ^ a b c d e f Dieter Gernert, Ockham's Razor and Its Improper Use, Journal of Scientific Exploration, Vol. 21, No. 1, pp. 135–140, (2007).
- ^ a b c Elliott Sober, Let’s Razor Occam’s Razor, p. 73-93, from Dudley Knowles (ed.) Explanation and Its Limits, Cambridge University Press (1994).
- ^ Induction: From Kolmogorov and Solomonoff to De Finetti and Back to Kolmogorov JJ McCall - Metroeconomica, 2004 - Wiley Online Library.
- ^ Foundations of Occam's razor and parsimony in learning from ricoh.comD Stork - NIPS 2001 Workshop, 2001
- ^ Occam's razor as a formal basis for a physical theory from arxiv.orgAN Soklakov - Foundations of Physics Letters, 2002 - Springer
- ^ Beyond the Turing Test from uclm.es J HERNANDEZ-ORALLO - Journal of Logic, Language, and …, 2000 - dsi.uclm.es
- ^ On the existence and convergence of computable universal priors from arxiv.org M Hutter - Algorithmic Learning Theory, 2003 - Springer
- ^ Standford encyclopedia of Philosophy.
- ^ Pegis 1945
- ^ Simon, Herbert (1962). "The architecture of complexity". Proceedings of the American Philosophical Society 106: 467–482. http://www.ecoplexity.org/files/uploads/Simon.pdf. p. 481
- ^ Quine, Willard V O (1960). Word and object. Cambridge, MA: MIT Press. ISBN 0262670011. p. 160
- ^ Stanovich, Keith E. (2007). How to Think Straight About Psychology. Boston: Pearson Education, pp. 19–33.
- ^ Carroll, Robert T. "Ad hoc hypothesis." The Skeptic's Dictionary. 22 Jun. 2008.
- ^ Swinburne 1997 and Williams, Gareth T, 2008
- ^ Jeffreys, W. H. and Berger (1991). Sharpening Ockham's Razor on a Bayesian Strop. | url= http://quasar.as.utexas.edu/papers/ockham.pdf
- ^ Einstein, Albert (1905). "Does the Inertia of a Body Depend Upon Its Energy Content?" (in German). Annalen der Physik. pp. 639–41.
- ^ L Nash, The Nature of the Natural Sciences, Boston: Little, Brown (1963).
- ^ de Maupertuis, PLM (1744) (in French). Mémoires de l'Académie Royale. p. 423.
- ^ de Broglie, L (1925) (in French). Annales de Physique. pp. 22–128.
- ^ RA Jackson, Mechanism: An Introduction to the Study of Organic Reactions, Clarendon, Oxford, 1972.
- ^ BK Carpenter, Determination of Organic Reaction Mechanism, Wiley-Interscience, New York, 1984.
- ^ Sober, Eliot (1994). "Let’s Razor Occam’s Razor". In Knowles, Dudley. Explanation and Its Limits. Cambridge University Press. pp. 73–93.
- ^ Science, 263, 641–646 (1994)
- ^ Ernst Mach, The Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/ernst-mach/
- ^ Lee, M. S. Y. (2002): Divergent evolution, hierarchy and cladistics. Zool. Scripta 31(2): 217–219. doi:10.1046/j.1463-6409.2002.00101.xPDF fulltext
- ^ Crick 1988, p.146.
- ^ Ratzsch, Del. Calvin. http://www.calvin.edu/academic/philosophy/faculty/ratzsch/.
- ^ "Many Universe Theories". Encyclopedia of Philosophy. Stanford. http://plato.stanford.edu/entries/teleological-arguments/.
- ^ McDonald 2005
- ^ "William Ockham". Encyclopedia of Philosophy. Standford. http://plato.stanford.edu/entries/ockham/.
- ^ "Occam's Razor". About.com. http://atheism.about.com/od/criticalthinking/a/occamrazor.htm.
- ^ Dale T Irvin & Scott W Sunquist. History of World Christian Movement Volume, I: Earliest Christianity to 1453, p. 434. ISBN-9781570753961
- ^ Tonry, Michael (2005): Obsolescence and Immanence in Penal Theory and Policy. Columbia Law Review 105: 1233–1275. PDF fulltext
- ^ Algorithmic Information Theory
- ^ Paul M. B. Vitányi and Ming Li; IEEE Transactions on Information Theory, Volume 46, Issue 2, Mar 2000 Page(s):446–464, "Minimum Description Length Induction, Bayesianism and Kolmogorov Complexity."
- ^ Chris S. Wallace and David M. Boulton; Computer Journal, Volume 11, Issue 2, 1968 Page(s):185-194, "An information measure for classification."
- ^ Chris S. Wallace and David L. Dowe; Computer Journal, Volume 42, Issue 4, Sep 1999 Page(s):270–283, "Minimum Message Length and Kolmogorov Complexity."
- ^ 'Occam’s razor as a formal basis for a physical theory' by Andrei N. Soklakov
- ^ 'Why Occam's Razor' by Russell Standish
- ^ Ray Solomonoff (1964): A formal theory of inductive inference. Part I. Information and Control, 7:1–22, 1964
- ^ J. Schmidhuber (2006) The New AI: General & Sound & Relevant for Physics. In B. Goertzel and C. Pennachin, eds.: Artificial General Intelligence, p. 177-200 http://arxiv.org/abs/cs.AI/0302012
- ^ David L. Dowe (2008): Foreword re C. S. Wallace; Computer Journal, Volume 51, Issue 5, Sept 2008 Pages:523-560
- ^ David L. Dowe (2010): MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. A formal theory of inductive inference. Handbook of the Philosophy of Science – (HPS Volume 7) Philosophy of Statistics, Elsevier 2010 Page(s):901-982
- ^ Scott Needham and David L. Dowe (2001): Message Length as an Effective Ockham's Razor in Decision Tree Induction. Proc. 8th International Workshop on Artificial Intelligence and Statistics (AI+STATS 2001), Key West, Florida, U.S.A., Jan. 2001 Page(s):253-260 http://www.csse.monash.edu.au/~dld/Publications/2001/Needham+Dowe2001_Ockham.pdf
- ^ The Beauty of Simplicity- Hortorian.com
- ^ ["But Ockham's razor does not say that the more simple a hypothesis, the better." http://www.skepdic.com/occam.html Skeptic's Dictionary]
- ^ "when you have two competing theories which make exactly the same predictions, the one that is simpler is the better."Usenet Physics FAQs
- ^ "Today, we think of the principle of parsimony as a heuristic device. We don't assume that the simpler theory is correct and the more complex one false. We know from experience that more often than not the theory that requires more complicated machinations is wrong. Until proved otherwise, the more complex theory competing with a simpler explanation should be put on the back burner, but not thrown onto the trash heap of history until proven false." (The Skeptic's dictionary)
- ^ "While these two facets of simplicity are frequently conflated, it is important to treat them as distinct. One reason for doing so is that considerations of parsimony and of elegance typically pull in different directions. Postulating extra entities may allow a theory to be formulated more simply, while reducing the ontology of a theory may only be possible at the price of making it syntactically more complex." Stanford Encyclopedia of Philosophy
- ^ Quine, W V O (1961). "Two dogmas of empiricism". From a logical point of view. Cambridge: Harvard University Press. pp. 20–46. ISBN 0674323513.
- ^ Original Latin: Entium varietates non temere esse minuendas. Kant, Immanuel (1950): The Critique of Pure Reason, transl. Kemp Smith, London. Available here: [1]
Further reading
- Ariew, Roger (1976). Ockham's Razor: A Historical and Philosophical Analysis of Ockham's Principle of Parsimony. Champaign-Urbana, University of Illinois.
- Charlesworth, M. J. (1956). "Aristotle's Razor". Philosophical Studies (Ireland)[clarification needed] 6: 105–112.
- Churchland, Paul M. (1984). Matter and Consciousness. Cambridge, Massachusetts: MIT Press. ISBN 0262530503. ISBN.
- Crick, Francis H. C. (1988). What Mad Pursuit: A Personal View of Scientific Discovery. New York, New York: Basic Books. ISBN 0465091377. ISBN.
- Dowe, David L.; Steve Gardner, Graham Oppy (December 2007). "Bayes not Bust! Why Simplicity is no Problem for Bayesians". British J. for the Philosophy of Science 58 (4): 709–754. doi:10.1093/bjps/axm033. http://bjps.oxfordjournals.org/cgi/content/abstract/axm033v1. Retrieved 2007-09-24.
- Duda, Richard O.; Peter E. Hart, David G. Stork (2000). Pattern Classification (2nd ed.). Wiley-Interscience. pp. 487–489. ISBN 0471056693. ISBN.
- Epstein, Robert (1984). "The Principle of Parsimony and Some Applications in Psychology". Journal of Mind Behavior 5: 119–130.
- Hoffmann, Roald; Vladimir I. Minkin, Barry K. Carpenter (1997). "Ockham's Razor and Chemistry". HYLE—International Journal for the Philosophy of Chemistry 3: 3–28. http://www.hyle.org/journal/issues/3/hoffman.htm. Retrieved 2006-04-14.
- Jacquette, Dale (1994). Philosophy of Mind. Engleswoods Cliffs, New Jersey: Prentice Hall. pp. 34–36. ISBN 0130309338. ISBN.
- Jaynes, Edwin Thompson (1994). "Model Comparison and Robustness". Probability Theory: The Logic of Science. ISBN 0521592712. http://omega.math.albany.edu:8008/ETJ-PS/cc24f.ps.
- Jefferys, William H.; Berger, James O. (1991). "Ockham's Razor and Bayesian Statistics (Preprint available as "Sharpening Occam's Razor on a Bayesian Strop)",". American Scientist 80: 64–72. http://quasar.as.utexas.edu/papers/ockham.pdf.
- Katz, Jerrold (1998). Realistic Rationalism. MIT Press. ISBN 0262112299.
- Kneale, William; Martha Kneale (1962). The Development of Logic. London: Oxford University Press. pp. 243. ISBN 0198241836. ISBN.
- MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press. ISBN 0521642981. ISBN. http://www.inference.phy.cam.ac.uk/mackay/itila/book.html.
- Maurer, A. (1984). "Ockham's Razor and Chatton's Anti-Razor". Medieval Studies 46: 463–475.
- McDonald, William (2005). "Søren Kierkegaard". Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/kierkegaard/. Retrieved 2006-04-14.
- Menger, Karl (1960). "A Counterpart of Ockham's Razor in Pure and Applied Mathematics: Ontological Uses". Synthese 12 (4): 415. doi:10.1007/BF00485426.
- Morgan, C. Lloyd (1903). "Other Minds than Ours". An Introduction to Comparative Psychology (2nd ed.). London: W. Scott. pp. 59. ISBN 0890931712. http://spartan.ac.brocku.ca/~lward/Morgan/Morgan_1903/Morgan_1903_03.html. Retrieved 2006-04-15.
- Nolan, D. (1997). "Quantitative Parsimony". British Journal for the Philosophy of Science 48 (3): 329–343. doi:10.1093/bjps/48.3.329.
- Pegis, A. C., translator (1945). Basic Writings of St. Thomas Aquinas. New York: Random House. pp. 129. ISBN 0872203808.
- Popper, Karl (1992). "7. Simplicity". The Logic of Scientific Discovery (2nd ed.). London: Routledge. pp. 121–132. ISBN 8430907114.
- Rodríguez-Fernández, J. L. (1999). "Ockham's Razor". Endeavour 23 (3): 121–125. doi:10.1016/S0160-9327(99)01199-0.
- Schmitt, Gavin C. (2005). "Ockham's Razor Suggests Atheism". Archived from the original on 2007-02-11. http://web.archive.org/web/20070211004045/http://framingbusiness.net/php/2005/ockhamatheism.php. Retrieved 2006-04-15.
- Smart, J. J. C. (1959). "Sensations and Brain Processes". Philosophical Review (The Philosophical Review, Vol. 68, No. 2) 68 (2): 141–156. doi:10.2307/2182164. JSTOR 2182164.
- Sober, Elliott (1975). Simplicity. Oxford: Oxford University Press.
- Sober, Elliott (1981). "The Principle of Parsimony". British Journal for the Philosophy of Science 32 (2): 145–156. doi:10.1093/bjps/32.2.145.
- Sober, Elliott (1990). "Let's Razor Ockham's Razor". In Dudley Knowles. Explanation and its Limits. Cambridge: Cambridge University Press. pp. 73–94. ISBN.
- Sober, Elliott (2001). "What is the Problem of Simplicity?". In Zellner et al.. http://philosophy.wisc.edu/sober/TILBURG.pdf. Retrieved 2006-04-15.
- Swinburne, Richard (1997). Simplicity as Evidence for Truth. Milwaukee, Wisconsin: Marquette University Press. ISBN 087462164X.
- Thorburn, W. M. (1918). "The Myth of Occam's Razor". Mind 27 (107): 345–353. doi:10.1093/mind/XXVII.3.345. http://en.wikisource.org/wiki/The_Myth_of_Occam%27s_Razor.
- Williams, George C. (1966). Adaptation and natural selection: A Critique of some Current Evolutionary Thought. Princeton, New Jersey: Princeton University Press. ISBN 0691026157. ISBN.
External links
- What is Occam's Razor? This essay distinguishes Occam's razor (used for theories with identical predictions) from the Principle of Parsimony (which can be applied to theories with different predictions).
- Skeptic's Dictionary: Occam's Razor
- Ockham's Razor, an essay at The Galilean Library on the historical and philosophical implications by Paul Newall.
- The Razor in the Toolbox: The history, use, and abuse of Occam’s razor, by Robert Novella
- NIPS 2001 Workshop "Foundations of Occam's Razor and parsimony in learning"
- Simplicity at Stanford Encyclopedia of Philosophy
- Occam's Razor on PlanetMath
- Humorous corollary "Rev. Nocents' Toothbrush" (science vs. religion)
- Sherlock Hemlock from Sesame Street – teaching Occam's razor to young children, Sherlock Hemlock comes up with a complex solution to a simple problem. But then reality proves him correct.
- Economic Parsimony in Practice at Pinchtown.com
- short blog entry about statistical parsimony
- Disproof of parsimony as a general principle in science
Logic Overview Academic
areas- Argumentation theory
- Axiology
- Critical thinking
- Computability theory
- Formal semantics
- History of logic
- Informal logic
- Logic in computer science
- Mathematical logic
- Mathematics
- Metalogic
- Metamathematics
- Model theory
- Philosophical logic
- Philosophy
- Philosophy of logic
- Philosophy of mathematics
- Proof theory
- Set theory
Foundational
concepts- Abduction
- Analytic truth
- Antinomy
- A priori
- Deduction
- Definition
- Description
- Entailment
- Induction
- Inference
- Logical consequence
- Logical form
- Logical implication
- Logical truth
- Name
- Necessity
- Meaning
- Paradox
- Possible world
- Presupposition
- Probability
- Reason
- Reasoning
- Reference
- Semantics
- Statement
- Substitution
- Syntax
- Truth
- Truth value
- Validity
Philosophical logic Critical thinking
and
Informal logicTheories of deduction Metalogic and metamathematics - Cantor's theorem
- Church's theorem
- Church's thesis
- Consistency
- Effective method
- Foundations of mathematics
- Gödel's completeness theorem
- Gödel's incompleteness theorems
- Soundness
- Completeness
- Decidability
- Interpretation
- Löwenheim–Skolem theorem
- Metatheorem
- Satisfiability
- Independence
- Type–token distinction
- Use–mention distinction
Mathematical logic General- Formal language
- Formation rule
- Formal system
- Deductive system
- Formal proof
- Formal semantics
- Well-formed formula
- Set
- Element
- Class
- Classical logic
- Axiom
- Natural deduction
- Rule of inference
- Relation
- Theorem
- Logical consequence
- Axiomatic system
- Type theory
- Symbol
- Syntax
- Theory
Non-classical logic - Degree of truth
- Fuzzy rule
- Fuzzy set
- Fuzzy finite element
- Fuzzy set operations
Logicians - Anderson
- Aristotle
- Averroes
- Avicenna
- Bain
- Barwise
- Bernays
- Boole
- Boolos
- Cantor
- Carnap
- Church
- Chrysippus
- Curry
- De Morgan
- Frege
- Geach
- Gentzen
- Gödel
- Hilbert
- Kleene
- Kripke
- Leibniz
- Löwenheim
- Peano
- Peirce
- Putnam
- Quine
- Russell
- Schröder
- Scotus
- Skolem
- Smullyan
- Tarski
- Turing
- Whitehead
- William of Ockham
- Wittgenstein
- Zermelo
Lists Topics - Outline of logic
- Index of logic articles
- Mathematical logic
- Boolean algebra
- Set theory
Other - Logicians
- Rules of inference
- Paradoxes
- Fallacies
- Logic symbols
Categories:- Adages
- Reductionism
- Heuristics
- Principles
- Critical thinking
- Philosophy of science
- Arguments against the existence of God
- Scientific terminology
- Ontology
Wikimedia Foundation. 2010.