Completeness

Completeness

In general, an object is complete if nothing needs to be added to it. This notion is made more specific in various fields.

Contents

Logical completeness

In logic, semantic completeness is the converse of soundness for formal systems. A formal system is "semantically complete" when all its tautologies are theorems, whereas a formal system is "sound" when all theorems are tautologies (that is, they are semantically valid formulas: formulas that are true under every interpretation of the language of the system that is consistent with the rules of the system). Kurt Gödel, Leon Henkin, and Emil Post all published proofs of completeness. (See History of the Church–Turing thesis.) A formal system is consistent if for all formulas φ of the system, the formulas φ and ¬φ (the negation of φ) are not both theorems of the system (that is, they cannot be both proved with the rules of the system).

  • A formal system S is semantically complete or simply complete, if and only if every tautology of S is a theorem of S. That is,  \models_{\mathcal S} \varphi\ \to\ \vdash_{\mathcal S} \varphi.[1]
  • A formal system S is strongly complete or complete in the strong sense if and only if for every set of premises Γ, any formula which semantically follows from Γ is derivable from Γ. That is,  \Gamma\models_{\mathcal S} \varphi \ \to\ \Gamma \vdash_{\mathcal S} \varphi.
  • A formal system S is syntactically complete or deductively complete or maximally complete or simply complete if and only if for each formula φ of the language of the system either φ or ¬φ is a theorem of S. This is also called negation completeness. In another sense, a formal system is syntactically complete if and only if no unprovable axiom can be added to it as an axiom without introducing an inconsistency. Truth-functional propositional logic and first-order predicate logic are semantically complete, but not syntactically complete (for example, the propositional logic statement consisting of a single variable "a" is not a theorem, and neither is its negation, but these are not tautologies). Gödel's incompleteness theorem shows that any recursive system that is sufficiently powerful, such as Peano arithmetic, cannot be both consistent and complete.
  • A formal system is inconsistent if and only if every sentence is a theorem.[2]
  • A language is expressively complete if it can express the subject matter for which it is intended.[citation needed]
  • A formal system is complete with respect to a property if and only if every sentence that has the property is a theorem.[citation needed]

Mathematical completeness

In mathematics, "complete" is a term that takes on specific meanings in specific situations, and not every situation in which a type of "completion" occurs is called a "completion". See, for example, algebraically closed field or compactification.

  • The completeness of the real numbers is one of the defining properties of the real number system. It may be described equivalently as either the completeness of R as metric space or as a partially ordered set (see below).
  • More generally, any topological group can be completed at a decreasing sequence of open subgroups.
  • In quantum mechanics, a complete set of commuting operators (or CSCO) is one whose eigenvalues are sufficient to specify the physical state of a system.

Computing

  • In algorithms, the notion of completeness refers to the ability of the algorithm to find a solution if one exists, and if not, to report that no solution is possible.
  • In computational complexity theory, a problem P is complete for a complexity class C, under a given type of reduction, if P is in C, and every problem in C reduces to P using that reduction. For example, each problem in the class NP-complete is complete for the class NP, under polynomial-time, many-one reduction.
  • In computing, a data-entry field can autocomplete the entered data based on the prefix typed into the field; that capability is known as autocompletion.
  • In software testing, completeness has for goal the functional verification of call graph (between software item) and control graph (inside each software item).
  • The concept of completeness is found in knowledge base theory.

Economics, finance, and industry

  • Complete markets versus incomplete markets
  • In auditing, completeness is one of the financial statement assertions that have to be ensured. For example, auditing classes of transactions. Rental expense which includes 12-month or 52-week payments should be all booked according to the terms agreed in the tenancy agreement.
  • Oil or gas well completion, the process of making a well ready for production.

Botany

  • A complete flower is a flower with both male and female reproductive structures as well as petals and sepals. See Sexual reproduction in plants.

References

  1. ^ Hunter, Geoffrey, Metalogic: An Introduction to the Metatheory of Standard First-Order Logic, University of California Pres, 1971
  2. ^ Alfred Tarski, Über einige fundamentale Begriffe der Mathematik, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie 23 (1930), Cl. III, pp. 22–29. English translation in: Alfred Tarski, Logic, Semantics, Metamathematics, Claredon Press, Oxford, 1956, pp. 30–37.

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Completeness — Com*plete ness, n. The state of being complete. [1913 Webster] …   The Collaborative International Dictionary of English

  • completeness — index conclusion (outcome), entirety, fait accompli, finality, quorum, totality, whole Burton s Legal …   Law dictionary

  • Completeness — (Roget s Thesaurus) < N PARAG:Completeness >N GRP: N 1 Sgm: N 1 completeness completeness &c. >Adj. Sgm: N 1 completion completion &c. 729 Sgm: N 1 integration integration Sgm: N 1 allness allness GRP: N 2 Sgm …   English dictionary for students

  • completeness — complete ► ADJECTIVE 1) having all the necessary or appropriate parts; entire. 2) having run its full course; finished. 3) to the greatest extent or degree; total. 4) skilled at every aspect of an activity: the complete footballer. 5) (complete… …   English terms dictionary

  • Completeness (order theory) — In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). A special use of the term refers to complete partial orders or complete lattices.… …   Wikipedia

  • Completeness of the real numbers — Intuitively, completeness implies that there are not any “gaps” (in Dedekind s terminology) or “missing points” in the real number line. This contrasts with the rational numbers, whose corresponding number line has a “gap” at each irrational… …   Wikipedia

  • Completeness (statistics) — In statistics, completeness is a property of a statistic in relation to a model for a set of observed data. In essence, it is a condition which ensures that the parameters of the probability distribution representing the model can all be… …   Wikipedia

  • Completeness axiom — In mathematics the completeness axiom, also called Dedekind completeness of the real numbers, is a fundamental property of the set R of real numbers. It is the property that distinguishes R from other ordered fields, especially from the set of… …   Wikipedia

  • Completeness of atomic initial sequents — In sequent calculus, the completeness of atomic initial sequents states that initial sequents A ⊢ A (where A is an arbitrary formula) can be derived from only atomic initial sequents p ⊢ p (where p is an atomic formula). This theorem plays a role …   Wikipedia

  • completeness — noun see complete I …   New Collegiate Dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”