Diagram (category theory)

Diagram (category theory)

In category theory, a branch of mathematics, a diagram is the categorical analogue of an indexed family in set theory. The primary difference is that in the categorical setting one has morphisms. An indexed family of sets is a collection of sets, indexed by a fixed set; equivalently, a function from a fixed index set to the class of sets. A diagram is a collection of objects and morphisms, indexed by a fixed category; equivalently, a functor from a fixed index category to some category.

Diagrams are used in the definition of limit and colimits and the related notion of cones.

Contents

Definition

Formally, a diagram of type J in a category C is a (covariant) functor

D : JC

The category J is called the index category or the scheme of the diagram D. The actual objects and morphisms in J are largely irrelevant, only the way in which they are interrelated matters. The diagram D is thought of as indexing a collection of objects and morphisms in C patterned on J.

Although, technically, there is no difference between an individual diagram and a functor or between a scheme and a category, the change in terminology reflects a change in perspective, just as in the set theoretic case: one fixes the index category, and allows the functor (and, secondarily, the target category) to vary.

One is most often interested in the case where the scheme J is a small or even finite category. A diagram is said to be small or finite whenever J is.

A morphism of diagrams of type J in a category C is a natural transformation between functors. One can then interpret the category of diagrams of type J in C as the functor category CJ, and a diagram is then an object in this category.

Examples

  • If J is a (small) discrete category, then a diagram of type J is essentially just an indexed family of objects in C (indexed by J).
  • If J is a poset category then a diagram of type J is a family of objects Di together with a unique morphism fij : DiDj whenever ij. If J is directed then a diagram of type J is called a direct system of objects and morphisms. If the diagram is contravariant then it is called an inverse system.
  • If J = 0 \overrightarrow{\to} 1, then a diagram of type J (f,g\colon X \to Y) is called "two parallel morphisms": its limit is an equalizer, and its colimit is a coequalizer.
  • If J = -1 ← 0 → +1, then a diagram of type J (ABC) is a span, and its colimit is a pushout.
  • If J = -1 → 0 ← +1, then a diagram of type J (ABC) is a cospan, and its limit is a pullback.

Cones and limits

A cone of a diagram D : JC is a morphism from the constant diagram Δ(N) to D. The constant diagram is the diagram which sends every object of J to an object N of C and every morphism to the identity morphism on N.

The limit of a diagram D is a universal cone to D. That is, a cone through which all other cones uniquely factor. If the limit exists in a category C for all diagrams of type J one obtains a functor

lim : CJC

which sends each diagram to its limit.

Dually, the colimit of diagram D is a universal cone from D. If the colimit exists for all diagrams of type J one has a functor

colim : CJC

which sends each diagram to its colimit.

Commutative diagrams

Diagrams and functor categories are often visualized by commutative diagrams, particularly if the index category is a finite poset category with few elements: one draws a commutative diagram with a node for every object in the index category, and an arrow for a generating set of morphisms, omitting identity maps and morphisms that can be expressed as compositions. The commutativity corresponds to the uniqueness of a map between two objects in a poset category. Conversely, every commutative diagram represents a diagram (a functor from a poset index category) in this way.

Not every diagram commutes, as not every index category is a poset category: most simply, the diagram of a single object with an endomorphism (f\colon X \to X), or with two parallel arrows (\bullet \overrightarrow{\to} \bullet; f,g\colon X \to Y) need not commute. Further, diagrams may be impossible (because infinite) or messy (because many objects or morphisms) to draw; however, schematic commutative diagrams (for subcategories of the index category, or with ellipses, such as for a directed system) are used to clarify such complex diagrams.

See also

Limits

Examples

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Category theory — In mathematics, category theory deals in an abstract way with mathematical structures and relationships between them: it abstracts from sets and functions to objects and morphisms . Categories now appear in most branches of mathematics and in… …   Wikipedia

  • Limit (category theory) — In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint… …   Wikipedia

  • Cone (category theory) — In category theory, a branch of mathematics, the cone of a functor is an abstract notion used to define the limit of that functor. Cones make other appearances in category theory as well. Contents 1 Definition 2 Equivalent formulations 3 Category …   Wikipedia

  • Span (category theory) — A span, in category theory, is a generalization of the notion of relation between two objects of a category. When the category has all pullbacks (and satisfies a small number of other conditions), spans can be considered as morphisms in a… …   Wikipedia

  • Product (category theory) — In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the cartesian product of sets, the direct product of groups, the direct… …   Wikipedia

  • Pushout (category theory) — In category theory, a branch of mathematics, a pushout (also called a fibered coproduct or fibered sum or cocartesian square or amalgamed sum) is the colimit of a diagram consisting of two morphisms f : Z → X and g : Z → Y with a common …   Wikipedia

  • Pullback (category theory) — In category theory, a branch of mathematics, a pullback (also called a fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms f : X → Z and g : Y → Z with a common codomain. The pullback is often written: P = X …   Wikipedia

  • Monad (category theory) — For the uses of monads in computer software, see monads in functional programming. In category theory, a branch of mathematics, a monad, Kleisli triple, or triple is an (endo )functor, together with two natural transformations. Monads are used in …   Wikipedia

  • End (category theory) — Not to be confused with the use of End to represent (categories of) endomorphisms. In category theory, an end of a functor is a universal dinatural transformation from an object e of X to S. More explicitly, this is a pair (e,ω), where e is an… …   Wikipedia

  • Nerve (category theory) — In category theory, the nerve N(C) of a small category C is a simplicial set constructed from the objects and morphisms of C. The geometric realization of this simplicial set is a topological space, called the classifying space of the category C …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”