- Bird
-
Synonyms:For other uses, see Bird (disambiguation).Aves and Avifauna redirect here. For other uses, see Aves (disambiguation) or Avifauna (disambiguation).
Birds
Temporal range: Late Jurassic–Recent, 150–0 MaRepresentatives of 18 of the almost 30 living bird orders. Scientific classification Kingdom: Animalia Phylum: Chordata Branch: Avialae Class: Aves
Linnaeus, 1758[1]Subclasses & orders - About two dozen modern orders and several extinct orders and subclasses
Listen to this article (info/dl)
Bird calls and songs, which are produced in the syrinx, are the major means by which birds communicate with sound. This communication can be very complex; some species can operate the two sides of the syrinx independently, allowing the simultaneous production of two different songs.[56] Calls are used for a variety of purposes, including mate attraction,[42] evaluation of potential mates,[121] bond formation, the claiming and maintenance of territories,[42] the identification of other individuals (such as when parents look for chicks in colonies or when mates reunite at the start of breeding season),[122] and the warning of other birds of potential predators, sometimes with specific information about the nature of the threat.[123] Some birds also use mechanical sounds for auditory communication. The Coenocorypha snipes of New Zealand drive air through their feathers,[124] woodpeckers drum territorially,[53] and Palm Cockatoos use tools to drum.[125]
Flocking and other associations
While some birds are essentially territorial or live in small family groups, other birds may form large flocks. The principal benefits of flocking are safety in numbers and increased foraging efficiency.[42] Defence against predators is particularly important in closed habitats like forests, where ambush predation is common and multiple eyes can provide a valuable early warning system. This has led to the development of many mixed-species feeding flocks, which are usually composed of small numbers of many species; these flocks provide safety in numbers but reduce potential competition for resources.[127] Costs of flocking include bullying of socially subordinate birds by more dominant birds and the reduction of feeding efficiency in certain cases.[128]
Birds sometimes also form associations with non-avian species. Plunge-diving seabirds associate with dolphins and tuna, which push shoaling fish towards the surface.[129] Hornbills have a mutualistic relationship with Dwarf Mongooses, in which they forage together and warn each other of nearby birds of prey and other predators.[130]
Resting and roosting
The high metabolic rates of birds during the active part of the day is supplemented by rest at other times. Sleeping birds often use a type of sleep known as vigilant sleep, where periods of rest are interspersed with quick eye-opening 'peeks', allowing them to be sensitive to disturbances and enable rapid escape from threats.[131] Swifts are believed to be able to sleep in flight and radar observations suggest that they orient themselves to face the wind in their roosting flight.[132] It has been suggested that there may be certain kinds of sleep which are possible even when in flight.[133] Some birds have also demonstrated the capacity to fall into slow-wave sleep one hemisphere of the brain at a time. The birds tend to exercise this ability depending upon its position relative to the outside of the flock. This may allow the eye opposite the sleeping hemisphere to remain vigilant for predators by viewing the outer margins of the flock. This adaptation is also known from marine mammals.[134] Communal roosting is common because it lowers the loss of body heat and decreases the risks associated with predators.[135] Roosting sites are often chosen with regard to thermoregulation and safety.[136]
Many sleeping birds bend their heads over their backs and tuck their bills in their back feathers, although others place their beaks among their breast feathers. Many birds rest on one leg, while some may pull up their legs into their feathers, especially in cold weather. Perching birds have a tendon locking mechanism that helps them hold on to the perch when they are asleep. Many ground birds, such as quails and pheasants, roost in trees. A few parrots of the genus Loriculus roost hanging upside down.[137] Some hummingbirds go into a nightly state of torpor accompanied with a reduction of their metabolic rates.[138] This physiological adaptation shows in nearly a hundred other species, including owlet-nightjars, nightjars, and woodswallows. One species, the Common Poorwill, even enters a state of hibernation.[139] Birds do not have sweat glands, but they may cool themselves by moving to shade, standing in water, panting, increasing their surface area, fluttering their throat or by using special behaviours like urohidrosis to cool themselves.
Breeding
Social systems
Ninety-five percent of bird species are socially monogamous. These species pair for at least the length of the breeding season or—in some cases—for several years or until the death of one mate.[141] Monogamy allows for biparental care, which is especially important for species in which females require males' assistance for successful brood-rearing.[142] Among many socially monogamous species, extra-pair copulation (infidelity) is common.[143] Such behaviour typically occurs between dominant males and females paired with subordinate males, but may also be the result of forced copulation in ducks and other anatids.[144] For females, possible benefits of extra-pair copulation include getting better genes for her offspring and insuring against the possibility of infertility in her mate.[145] Males of species that engage in extra-pair copulations will closely guard their mates to ensure the parentage of the offspring that they raise.[146]
Other mating systems, including polygyny, polyandry, polygamy, polygynandry, and promiscuity, also occur.[42] Polygamous breeding systems arise when females are able to raise broods without the help of males.[42] Some species may use more than one system depending on the circumstances.
Breeding usually involves some form of courtship display, typically performed by the male.[147] Most displays are rather simple and involve some type of song. Some displays, however, are quite elaborate. Depending on the species, these may include wing or tail drumming, dancing, aerial flights, or communal lekking. Females are generally the ones that drive partner selection,[148] although in the polyandrous phalaropes, this is reversed: plainer males choose brightly coloured females.[149] Courtship feeding, billing and allopreening are commonly performed between partners, generally after the birds have paired and mated.[53]
Homosexual behaviour has been observed in males or females in numerous species of birds, including copulation, pair-bonding, and joint parenting of chicks.[150]
Territories, nesting and incubation
See also: Bird nestMany birds actively defend a territory from others of the same species during the breeding season; maintenance of territories protects the food source for their chicks. Species that are unable to defend feeding territories, such as seabirds and swifts, often breed in colonies instead; this is thought to offer protection from predators. Colonial breeders defend small nesting sites, and competition between and within species for nesting sites can be intense.[151]
All birds lay amniotic eggs with hard shells made mostly of calcium carbonate.[42] Hole and burrow nesting species tend to lay white or pale eggs, while open nesters lay camouflaged eggs. There are many exceptions to this pattern, however; the ground-nesting nightjars have pale eggs, and camouflage is instead provided by their plumage. Species that are victims of brood parasites have varying egg colours to improve the chances of spotting a parasite's egg, which forces female parasites to match their eggs to those of their hosts.[152]
Bird eggs are usually laid in a nest. Most species create somewhat elaborate nests, which can be cups, domes, plates, beds scrapes, mounds, or burrows.[153] Some bird nests, however, are extremely primitive; albatross nests are no more than a scrape on the ground. Most birds build nests in sheltered, hidden areas to avoid predation, but large or colonial birds—which are more capable of defence—may build more open nests. During nest construction, some species seek out plant matter from plants with parasite-reducing toxins to improve chick survival,[154] and feathers are often used for nest insulation.[153] Some bird species have no nests; the cliff-nesting Common Guillemot lays its eggs on bare rock, and male Emperor Penguins keep eggs between their body and feet. The absence of nests is especially prevalent in ground-nesting species where the newly hatched young are precocial.
Incubation, which optimises temperature for chick development, usually begins after the last egg has been laid.[42] In monogamous species incubation duties are often shared, whereas in polygamous species one parent is wholly responsible for incubation. Warmth from parents passes to the eggs through brood patches, areas of bare skin on the abdomen or breast of the incubating birds. Incubation can be an energetically demanding process; adult albatrosses, for instance, lose as much as 83 grams (2.9 oz) of body weight per day of incubation.[155] The warmth for the incubation of the eggs of megapodes comes from the sun, decaying vegetation or volcanic sources.[156] Incubation periods range from 10 days (in woodpeckers, cuckoos and passerine birds) to over 80 days (in albatrosses and kiwis).[42]
Parental care and fledging
At the time of their hatching, chicks range in development from helpless to independent, depending on their species. Helpless chicks are termed altricial, and tend to be born small, blind, immobile and naked; chicks that are mobile and feathered upon hatching are termed precocial. Altricial chicks need help thermoregulating and must be brooded for longer than precocial chicks. Chicks at neither of these extremes can be semi-precocial or semi-altricial.
The length and nature of parental care varies widely amongst different orders and species. At one extreme, parental care in megapodes ends at hatching; the newly hatched chick digs itself out of the nest mound without parental assistance and can fend for itself immediately.[157] At the other extreme, many seabirds have extended periods of parental care, the longest being that of the Great Frigatebird, whose chicks take up to six months to fledge and are fed by the parents for up to an additional 14 months.[158]
In some species, both parents care for nestlings and fledglings; in others, such care is the responsibility of only one sex. In some species, other members of the same species—usually close relatives of the breeding pair, such as offspring from previous broods—will help with the raising of the young.[159] Such alloparenting is particularly common among the Corvida, which includes such birds as the true crows, Australian Magpie and Fairy-wrens,[160] but has been observed in species as different as the Rifleman and Red Kite. Among most groups of animals, male parental care is rare. In birds, however, it is quite common—more so than in any other vertebrate class.[42] Though territory and nest site defence, incubation, and chick feeding are often shared tasks, there is sometimes a division of labour in which one mate undertakes all or most of a particular duty.[161]
The point at which chicks fledge varies dramatically. The chicks of the Synthliboramphus murrelets, like the Ancient Murrelet, leave the nest the night after they hatch, following their parents out to sea, where they are raised away from terrestrial predators.[162] Some other species, such as ducks, move their chicks away from the nest at an early age. In most species, chicks leave the nest just before, or soon after, they are able to fly. The amount of parental care after fledging varies; albatross chicks leave the nest on their own and receive no further help, while other species continue some supplementary feeding after fledging.[163] Chicks may also follow their parents during their first migration.[164]
Brood parasites
Main article: Brood parasiteBrood parasitism, in which an egg-layer leaves her eggs with another individual's brood, is more common among birds than any other type of organism.[165] After a parasitic bird lays her eggs in another bird's nest, they are often accepted and raised by the host at the expense of the host's own brood. Brood parasites may be either obligate brood parasites, which must lay their eggs in the nests of other species because they are incapable of raising their own young, or non-obligate brood parasites, which sometimes lay eggs in the nests of conspecifics to increase their reproductive output even though they could have raised their own young.[166] One hundred bird species, including honeyguides, icterids, estrildid finches and ducks, are obligate parasites, though the most famous are the cuckoos.[165] Some brood parasites are adapted to hatch before their host's young, which allows them to destroy the host's eggs by pushing them out of the nest or to kill the host's chicks; this ensures that all food brought to the nest will be fed to the parasitic chicks.[167]
Ecology
Birds occupy a wide range of ecological positions.[126] While some birds are generalists, others are highly specialised in their habitat or food requirements. Even within a single habitat, such as a forest, the niches occupied by different species of birds vary, with some species feeding in the forest canopy, others beneath the canopy, and still others on the forest floor. Forest birds may be insectivores, frugivores, and nectarivores. Aquatic birds generally feed by fishing, plant eating, and piracy or kleptoparasitism. Birds of prey specialise in hunting mammals or other birds, while vultures are specialised scavengers. Avivores are animals that are specialized at predating birds.
Some nectar-feeding birds are important pollinators, and many frugivores play a key role in seed dispersal.[168] Plants and pollinating birds often coevolve,[169] and in some cases a flower's primary pollinator is the only species capable of reaching its nectar.[170]
Birds are often important to island ecology. Birds have frequently reached islands that mammals have not; on those islands, birds may fulfill ecological roles typically played by larger animals. For example, in New Zealand the moas were important browsers, as are the Kereru and Kokako today.[168] Today the plants of New Zealand retain the defensive adaptations evolved to protect them from the extinct moa.[171] Nesting seabirds may also affect the ecology of islands and surrounding seas, principally through the concentration of large quantities of guano, which may enrich the local soil[172] and the surrounding seas.[173]
A wide variety of Avian ecology field methods, including counts, nest monitoring, and capturing and marking, are used for researching avian ecology.
Relationship with humans
Since birds are highly visible and common animals, humans have had a relationship with them since the dawn of man.[174] Sometimes, these relationships are mutualistic, like the cooperative honey-gathering among honeyguides and African peoples such as the Borana.[175] Other times, they may be commensal, as when species such as the House Sparrow[176] have benefited from human activities. Several bird species have become commercially significant agricultural pests,[177] and some pose an aviation hazard.[178] Human activities can also be detrimental, and have threatened numerous bird species with extinction (hunting, avian lead poisoning, pesticides, roadkill, and predation by pet cats and dogs are common sources of death for birds).
Birds can act as vectors for spreading diseases such as psittacosis, salmonellosis, campylobacteriosis, mycobacteriosis (avian tuberculosis), avian influenza (bird flu), giardiasis, and cryptosporidiosis over long distances. Some of these are zoonotic diseases that can also be transmitted to humans.[179]
Economic importance
Domesticated birds raised for meat and eggs, called poultry, are the largest source of animal protein eaten by humans; in 2003, 76 million tons of poultry and 61 million tons of eggs were produced worldwide.[180] Chickens account for much of human poultry consumption, though turkeys, ducks, and geese are also relatively common. Many species of birds are also hunted for meat. Bird hunting is primarily a recreational activity except in extremely undeveloped areas. The most important birds hunted in North and South America are waterfowl; other widely hunted birds include pheasants, wild turkeys, quail, doves, partridge, grouse, snipe, and woodcock.[181] Muttonbirding is also popular in Australia and New Zealand.[182] Though some hunting, such as that of muttonbirds, may be sustainable, hunting has led to the extinction or endangerment of dozens of species.[183]
Other commercially valuable products from birds include feathers (especially the down of geese and ducks), which are used as insulation in clothing and bedding, and seabird feces (guano), which is a valuable source of phosphorus and nitrogen. The War of the Pacific, sometimes called the Guano War, was fought in part over the control of guano deposits.[184]
Birds have been domesticated by humans both as pets and for practical purposes. Colourful birds, such as parrots and mynas, are bred in captivity or kept as pets, a practice that has led to the illegal trafficking of some endangered species.[185] Falcons and cormorants have long been used for hunting and fishing, respectively. Messenger pigeons, used since at least 1 AD, remained important as recently as World War II. Today, such activities are more common either as hobbies, for entertainment and tourism,[186] or for sports such as pigeon racing.
Amateur bird enthusiasts (called birdwatchers, twitchers or, more commonly, birders) number in the millions.[187] Many homeowners erect bird feeders near their homes to attract various species. Bird feeding has grown into a multimillion dollar industry; for example, an estimated 75% of households in Britain provide food for birds at some point during the winter.[188]
Religion, folklore and culture
Birds play prominent and diverse roles in folklore, religion, and popular culture. In religion, birds may serve as either messengers or priests and leaders for a deity, such as in the Cult of Makemake, in which the Tangata manu of Easter Island served as chiefs,[189] or as attendants, as in the case of Hugin and Munin, two Common Ravens who whispered news into the ears of the Norse god Odin.[190] Priests were involved in augury, or interpreting the words of birds while the "auspex" (from which the word "auspicious" is derived) watched their activities to foretell events.[191] They may also serve as religious symbols, as when Jonah (Hebrew: יוֹנָה, dove) embodied the fright, passivity, mourning, and beauty traditionally associated with doves.[192] Birds have themselves been deified, as in the case of the Common Peacock, which is perceived as Mother Earth by the Dravidians of India.[193] Some birds have also been perceived as monsters, including the mythological Roc and the Māori's legendary Pouākai, a giant bird capable of snatching humans.[194]
Birds have been featured in culture and art since prehistoric times, when they were represented in early cave paintings.[195] Birds were later used in religious or symbolic art and design, such as the magnificent Peacock Throne of the Mughal and Persian emperors.[196] With the advent of scientific interest in birds, many paintings of birds were commissioned for books. Among the most famous of these bird artists was John James Audubon, whose paintings of North American birds were a great commercial success in Europe and who later lent his name to the National Audubon Society.[197] Birds are also important figures in poetry; for example, Homer incorporated Nightingales into his Odyssey, and Catullus used a sparrow as an erotic symbol in his Catullus 2.[198] The relationship between an albatross and a sailor is the central theme of Samuel Taylor Coleridge's The Rime of the Ancient Mariner, which led to the use of the term as a metaphor for a 'burden'.[199] Other English metaphors derive from birds; vulture funds and vulture investors, for instance, take their name from the scavenging vulture.[200]
Perceptions of various bird species often vary across cultures. Owls are associated with bad luck, witchcraft, and death in parts of Africa,[201] but are regarded as wise across much of Europe.[202] Hoopoes were considered sacred in Ancient Egypt and symbols of virtue in Persia, but were thought of as thieves across much of Europe and harbingers of war in Scandinavia.[203]
Conservation
Main article: Bird conservationSee also: Late Quaternary prehistoric birds, List of extinct birds, and Raptor conservationThough human activities have allowed the expansion of a few species, such as the Barn Swallow and European Starling, they have caused population decreases or extinction in many other species. Over a hundred bird species have gone extinct in historical times,[204] although the most dramatic human-caused avian extinctions, eradicating an estimated 750–1800 species, occurred during the human colonisation of Melanesian, Polynesian, and Micronesian islands.[205] Many bird populations are declining worldwide, with 1,227 species listed as threatened by Birdlife International and the IUCN in 2009.[206][207]
The most commonly cited human threat to birds is habitat loss.[208] Other threats include overhunting, accidental mortality due to structural collisions or long-line fishing bycatch,[209] pollution (including oil spills and pesticide use),[210] competition and predation from nonnative invasive species,[211] and climate change.
Governments and conservation groups work to protect birds, either by passing laws that preserve and restore bird habitat or by establishing captive populations for reintroductions. Such projects have produced some successes; one study estimated that conservation efforts saved 16 species of bird that would otherwise have gone extinct between 1994 and 2004, including the California Condor and Norfolk Parakeet.[212]
See also
Notes
- ^ Brands, Sheila (14 August 2008). "Systema Naturae 2000 / Classification, Class Aves". Project: The Taxonomicon. http://www.taxonomy.nl/Main/Classification/51354.htm. Retrieved 4 February 2009.
- ^ del Hoyo, Josep; Andy Elliott and Jordi Sargatal (1992). Handbook of Birds of the World, Volume 1: Ostrich to Ducks. Barcelona: Lynx Edicions. ISBN 84-87334-10-5.
- ^ (Latin) Linnaeus, Carolus (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Holmiae. (Laurentii Salvii). p. 824.
- ^ a b c Livezey, BC; Zusi, RL (January 2007). "Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion". Zoological Journal of the Linnean Society 149 (1): 1–95. doi:10.1111/j.1096-3642.2006.00293.x. ISSN 0024-4082. PMC 2517308. PMID 18784798. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2517308.
- ^ Padian, Kevin; L.M. Chiappe Chiappe LM (1997). "Bird Origins". In Philip J. Currie and Kevin Padian (eds.). Encyclopedia of Dinosaurs. San Diego: Academic Press. pp. 41–96. ISBN 0-12-226810-5.
- ^ Gauthier, Jacques (1986). "Saurischian Monophyly and the origin of birds". In Kevin Padian. The Origin of Birds and the Evolution of Flight. Memoirs of the California Academy of Science 8. San Francisco, CA: Published by California Academy of Sciences. pp. 1–55. ISBN 0-940228-14-9.
- ^ "Bird biogeography". http://people.eku.edu/ritchisong/birdbiogeography1.htm. Retrieved 2008-04-10.
- ^ Clements, James F. (2007). The Clements Checklist of Birds of the World (6th ed.). Ithaca: Cornell University Press. ISBN 978-0-8014-4501-9.
- ^ Gill, Frank (2006). Birds of the World: Recommended English Names. Princeton: Princeton University Press. ISBN 978-0-691-12827-6.
- ^ Prum, Richard O. Prum (December 2008). "Who's Your Daddy". Science 322 (5909): 1799–1800. doi:10.1126/science.1168808. ISSN 0036-8075. PMID 19095929.
- ^ Paul, Gregory S. (2002). "Looking for the True Bird Ancestor". Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds. Baltimore: Johns Hopkins University Press. pp. 171–224. ISBN 0-8018-6763-0.
- ^ Norell, Mark; Mick Ellison (2005). Unearthing the Dragon: The Great Feathered Dinosaur Discovery. New York: Pi Press. ISBN 0-13-186266-9.
- ^ Xing Xu, Hailu You, Kai Du and Fenglu Han (28 July 2011). "An Archaeopteryx-like theropod from China and the origin of Avialae". Nature 475 (7357): 465–470. doi:10.1038/nature10288. PMID 21796204. http://www.nature.com/nature/journal/v475/n7357/full/nature10288.html.
- ^ Turner, Alan H.; Pol, D; Clarke, JA; Erickson, GM; Norell, MA (September 2007). "A basal dromaeosaurid and size evolution preceding avian flight" (PDF). Science 317 (5843): 1378–1381. doi:10.1126/science.1144066. ISSN 0036-8075. PMID 17823350. http://www.sciencemag.org/cgi/reprint/317/5843/1378.pdf.
- ^ Xu, X; Zhou, Z; Wang, X; Kuang, X; Zhang, F; Du, X (January 2003). "Four-winged dinosaurs from China". Nature 421 (6921): 335–340. doi:10.1038/nature01342. ISSN 0028-0836. PMID 12540892.
- ^ On the Origin of Birds
- ^ Mayr, G.; Phol, B.; Hartman, S.; Peters, D.S. (2007). "The tenth skeletal specimen of Archaeopteryx". Zoological Journal of the Linnean Society 149: 97–116. doi:10.1111/j.1096-3642.2006.00245.x.
- ^ Heilmann, Gerhard (1927). The Origin of Birds. New York: Dover Publications.
- ^ Rasskin-Gutman, Diego; Buscalioni, Angela D. (March 2001). "Theoretical morphology of the Archosaur (Reptilia: Diapsida) pelvic girdle". Paleobiology 27 (1): 59–78. doi:10.1666/0094-8373(2001)027<0059:TMOTAR>2.0.CO;2. ISSN 0094-8373.
- ^ Feduccia, Alan; Lingham-Soliar, T; Hinchliffe, JR (November 2005). "Do feathered dinosaurs exist? Testing the hypothesis on neontological and paleontological evidence". Journal of Morphology 266 (2): 125–66. doi:10.1002/jmor.10382. ISSN 0362-2525. PMID 16217748.
- ^ This theory is contested by most paleontologists. Prum, Richard O. (April 2003). "Are Current Critiques Of The Theropod Origin Of Birds Science? Rebuttal To Feduccia 2002". The Auk 120 (2): 550–61. doi:10.1642/0004-8038(2003)120[0550:ACCOTT]2.0.CO;2. ISSN 0004-8038. JSTOR 4090212.
- ^ a b c d e Chiappe, Luis M. (2007). Glorified Dinosaurs: The Origin and Early Evolution of Birds. Sydney: University of New South Wales Press. ISBN 978-0-86840-413-4.
- ^ Birds survived dino extinction with keen senses
- ^ Clarke, Julia A. (September 2004). "Morphology, Phylogenetic Taxonomy, and Systematics of Ichthyornis and Apatornis (Avialae: Ornithurae)" (PDF). Bulletin of the American Museum of Natural History 286: 1–179. doi:10.1206/0003-0090(2004)286<0001:MPTASO>2.0.CO;2. ISSN 0003-0090. http://digitallibrary.amnh.org/dspace/bitstream/2246/454/1/B286.pdf.
- ^ Clarke, Julia A.; Tambussi, CP; Noriega, JI; Erickson, GM; Ketcham, RA (January 2005). "Definitive fossil evidence for the extant avian radiation in the Cretaceous" (PDF). Nature 433 (7023): 305–308. doi:10.1038/nature03150. ISSN 0028-0836. PMID 15662422. http://www.digimorph.org/specimens/Vegavis_iaai/nature03150.pdf. Nature.com, Supporting information
- ^ a b c Ericson, Per G.P.; Anderson, CL; Britton, T; Elzanowski, A; Johansson, US; Källersjö, M; Ohlson, JI; Parsons, TJ et al. (December 2006). "Diversification of Neoaves: Integration of molecular sequence data and fossils" (PDF). Biology Letters 2 (4): 543–547. doi:10.1098/rsbl.2006.0523. ISSN 1744-9561. PMC 1834003. PMID 17148284. http://www.senckenberg.de/files/content/forschung/abteilung/terrzool/ornithologie/neoaves.pdf.
- ^ Brown, Joseph W.; Payne, RB; Mindell, DP (June 2007). "Nuclear DNA does not reconcile 'rocks' and 'clocks' in Neoaves: a comment on Ericson et al.". Biology Letters 3 (3): 257–259. doi:10.1098/rsbl.2006.0611. ISSN 1744-9561. PMC 2464679. PMID 17389215. http://rsbl.royalsocietypublishing.org/cgi/pmidlookup?view=long&pmid=17389215.
- ^ Sibley, Charles; Jon Edward Ahlquist (1990). Phylogeny and classification of birds. New Haven: Yale University Press. ISBN 0-300-04085-7.
- ^ Mayr, Ernst; Short, Lester L. (1970). Species Taxa of North American Birds: A Contribution to Comparative Systematics. Publications of the Nuttall Ornithological Club, no. 9. Cambridge, Mass.: Nuttall Ornithological Club. OCLC 517185.
- ^ Tolweb.org, "Neoaves". Tree of Life Project
- ^ Newton, Ian (2003). The Speciation and Biogeography of Birds. Amsterdam: Academic Press. p. 463. ISBN 0-12-517375-X.
- ^ Brooke, Michael (2004). Albatrosses And Petrels Across The World. Oxford: Oxford University Press. ISBN 0-19-850125-0.
- ^ Weir, Jason T.; Schluter, D (March 2007). "The Latitudinal Gradient in Recent Speciation and Extinction Rates of Birds and Mammals". Science 315 (5818): 1574–76. doi:10.1126/science.1135590. ISSN 0036-8075. PMID 17363673.
- ^ a b Schreiber, Elizabeth Anne; Joanna Burger (2001). Biology of Marine Birds. Boca Raton: CRC Press. ISBN 0-8493-9882-7.
- ^ Sato, Katsufumi; N; K; N; W; C; B; H et al. (1 May 2002). "Buoyancy and maximal diving depth in penguins: do they control inhaling air volume?". Journal of Experimental Biology 205 (9): 1189–1197. ISSN 0022-0949. PMID 11948196. http://jeb.biologists.org/cgi/content/full/205/9/1189.
- ^ Hill, David; Peter Robertson (1988). The Pheasant: Ecology, Management, and Conservation. Oxford: BSP Professional. ISBN 0-632-02011-3.
- ^ Spreyer, Mark F.; Enrique H. Bucher (1998). "Monk Parakeet (Myiopsitta monachus)". The Birds of North America. Cornell Lab of Ornithology. doi:10.2173/bna.322. http://bna.birds.cornell.edu/bna/species/322.
- ^ Arendt, Wayne J. (1 January 1988). "Range Expansion of the Cattle Egret, (Bubulcus ibis) in the Greater Caribbean Basin". Colonial Waterbirds 11 (2): 252–62. doi:10.2307/1521007. ISSN 07386028. JSTOR 1521007.
- ^ Bierregaard, R.O. (1994). "Yellow-headed Caracara". In Josep del Hoyo, Andrew Elliott and Jordi Sargatal (eds.). Handbook of the Birds of the World. Volume 2; New World Vultures to Guineafowl. Barcelona: Lynx Edicions. ISBN 84-87334-15-6.
- ^ Juniper, Tony; Mike Parr (1998). Parrots: A Guide to the Parrots of the World. London: Christopher Helm. ISBN 0-7136-6933-0.
- ^ Ehrlich, Paul R.; David S. Dobkin, and Darryl Wheye (1988). "Adaptations for Flight". Birds of Stanford. Stanford University. http://www.stanford.edu/group/stanfordbirds/text/essays/Adaptations.html. Retrieved 2007-12-13. Based on The Birder's Handbook (Paul Ehrlich, David Dobkin, and Darryl Wheye. 1988. Simon and Schuster, New York.)
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Gill, Frank (1995). Ornithology. New York: WH Freeman and Co. ISBN 0-7167-2415-4.
- ^ "The Avian Skeleton". paulnoll.com. http://www.paulnoll.com/Oregon/Birds/Avian-Skeleton.html. Retrieved 2007-12-13.
- ^ "Skeleton of a typical bird". Fernbank Science Center's Ornithology Web. http://fsc.fernbank.edu/Birding/skeleton.htm. Retrieved 2007-12-13.
- ^ Ehrlich, Paul R.; David S. Dobkin, and Darryl Wheye (1988). "Drinking". Birds of Stanford. Standford University. http://www.stanford.edu/group/stanfordbirds/text/essays/Drinking.html. Retrieved 2007-12-13.
- ^ Tsahar, Ella; Martínez Del Rio, C; Izhaki, I; Arad, Z (March 2005). "Can birds be ammonotelic? Nitrogen balance and excretion in two frugivores". Journal of Experimental Biology 208 (6): 1025–34. doi:10.1242/jeb.01495. ISSN 0022-0949. PMID 15767304. http://jeb.biologists.org/cgi/pmidlookup?view=long&pmid=15767304.
- ^ Skadhauge, E; Erlwanger, KH; Ruziwa, SD; Dantzer, V; Elbrønd, VS; Chamunorwa, JP (2003). "Does the ostrich (Struthio camelus) coprodeum have the electrophysiological properties and microstructure of other birds?". Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 134 (4): 749–755. doi:10.1016/S1095-6433(03)00006-0. PMID 12814783.
- ^ Preest, Marion R.; Beuchat, Carol A. (April 1997). "Ammonia excretion by hummingbirds". Nature 386 (6625): 561–62. doi:10.1038/386561a0.
- ^ Mora, J.; Martuscelli, J; Ortiz Pineda, J; Soberon, G (July 1965). "The Regulation of Urea-Biosynthesis Enzymes in Vertebrates" (PDF). Biochemical Journal 96: 28–35. ISSN 0264-6021. PMC 1206904. PMID 14343146. http://www.biochemj.org/bj/096/0028/0960028.pdf.
- ^ Packard, L (January 1966). "The Influence of Ambient Temperature and Aridity on Modes of Reproduction and Excretion of Amniote Vertebrates". The American Naturalist 100 (916): 667–82. doi:10.1086/282459. ISSN 0028-7628. JSTOR 2459303. PMID 282459.
- ^ Balgooyen, Thomas G. (1 October 1971). "Pellet Regurgitation by Captive Sparrow Hawks (Falco sparverius)" (PDF). Condor 73 (3): 382–85. doi:10.2307/1365774. ISSN 00105422. JSTOR 1365774. http://elibrary.unm.edu/sora/Condor/files/issues/v073n03/p0382-p0385.pdf.
- ^ Gionfriddo, James P.; Best (1 February 1995). "Grit Use by House Sparrows: Effects of Diet and Grit Size" (PDF). Condor 97 (1): 57–67. doi:10.2307/1368983. ISSN 00105422. http://elibrary.unm.edu/sora/Condor/files/issues/v097n01/p0057-p0067.pdf.
- ^ a b c Attenborough, David (1998). The Life of Birds. Princeton: Princeton University Press. ISBN 0-691-01633-X.
- ^ a b Battley, Phil F.; Piersma, T; Dietz, MW; Tang, S; Dekinga, A; Hulsman, K (January 2000). "Empirical evidence for differential organ reductions during trans-oceanic bird flight". Proceedings of the Royal Society B 267 (1439): 191–5. doi:10.1098/rspb.2000.0986. ISSN 0962-8452. PMC 1690512. PMID 10687826. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1690512. (Erratum in Proceedings of the Royal Society B 267(1461):2567.)
- ^ Maina, John N. (November 2006). "Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone". Biological Reviews 81 (4): 545–79. doi:10.1017/S1464793106007111. ISSN 1464-7931. PMID 17038201.
- ^ a b Suthers, Roderick A.; Sue Anne Zollinger (2004). "Producing song: the vocal apparatus". In H. Philip Zeigler and Peter Marler (eds.). Behavioral Neurobiology of Birdsong. Annals of the New York Academy of Sciences 1016. New York: New York Academy of Sciences. pp. 109–129. doi:10.1196/annals.1298.041. ISBN 1-57331-473-0. PMID 15313772
- ^ Fitch, W. T. (1999). "Acoustic exaggeration of size in birds via tracheal elongation: comparative and theoretical analyses". Journal of Zoology 248: 31-48. doi:10.1017/S095283699900504X. ISSN 0952-8369.
- ^ Scott, Robert B. (March 1966). "Comparative hematology: The phylogeny of the erythrocyte". Annals of Hematology 12 (6): 340–51. doi:10.1007/BF01632827. ISSN 0006-5242. PMID 5325853.
- ^ Sales, James (2005). "The endangered kiwi: a review" (PDF). Folia Zoologica 54 (1–2): 1–20. http://www.ivb.cz/folia/54/1-2/01-20.pdf.
- ^ Ehrlich, Paul R.; David S. Dobkin, and Darryl Wheye (1988). "The Avian Sense of Smell". Birds of Stanford. Standford University. http://www.stanford.edu/group/stanfordbirds/text/essays/Avian_Sense.html. Retrieved 2007-12-13.
- ^ Lequette, Benoit; Verheyden; Jouventin (1 August 1989). "Olfaction in Subantarctic seabirds: Its phylogenetic and ecological significance" (PDF). The Condor 91 (3): 732–35. doi:10.2307/1368131. ISSN 00105422. http://elibrary.unm.edu/sora/Condor/files/issues/v091n03/p0732-p0735.pdf.
- ^ Wilkie, Susan E.; Vissers, PM; Das, D; Degrip, WJ; Bowmaker, JK; Hunt, DM (February 1998). "The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus)". Biochemical Journal 330: 541–47. ISSN 0264-6021. PMC 1219171. PMID 9461554. http://www.biochemj.org/bj/330/0541/bj3300541.htm.
- ^ Andersson, S.; J. Ornborg and M. Andersson (1998). "Ultraviolet sexual dimorphism and assortative mating in blue tits". Proceeding of the Royal Society B 265 (1395): 445–50. doi:10.1098/rspb.1998.0315.
- ^ Viitala, Jussi; Korplmäki, Erkki; Palokangas, Pälvl; Koivula, Minna (1995). "Attraction of kestrels to vole scent marks visible in ultraviolet light". Nature 373 (6513): 425–27. doi:10.1038/373425a0.
- ^ Williams, David L.; Flach, E (March 2003). "Symblepharon with aberrant protrusion of the nictitating membrane in the snowy owl (Nyctea scandiaca)". Veterinary Ophthalmology 6 (1): 11–13. doi:10.1046/j.1463-5224.2003.00250.x. ISSN 1463-5216. PMID 12641836.
- ^ White, Craig R.; Day, N; Butler, PJ; Martin, GR; Bennett, Peter (July 2007). Bennett, Peter. ed. "Vision and Foraging in Cormorants: More like Herons than Hawks?". PLoS ONE 2 (7): e639. doi:10.1371/journal.pone.0000639. PMC 1919429. PMID 17653266. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1919429.
- ^ Martin, Graham R.; Katzir, G (1999). "Visual fields in Short-toed Eagles, Circaetus gallicus (Accipitridae), and the function of binocularity in birds". Brain, Behaviour and Evolution 53 (2): 55–66. doi:10.1159/000006582. ISSN 0006-8977. PMID 9933782.
- ^ Saito, Nozomu (1978). "Physiology and anatomy of avian ear". The Journal of the Acoustical Society of America 64 (S1): S3. doi:10.1121/1.2004193.
- ^ Warham, John (1 May 1977). "The Incidence, Function and ecological significance of petrel stomach oils" (PDF). Proceedings of the New Zealand Ecological Society 24 (3): 84–93. doi:10.2307/1365556. ISSN 00105422. JSTOR 1365556. http://www.newzealandecology.org/nzje/free_issues/ProNZES24_84.pdf.
- ^ Dumbacher, J.P.; Beehler, BM; Spande, TF; Garraffo, HM; Daly, JW (October 1992). "Homobatrachotoxin in the genus Pitohui: chemical defense in birds?". Science 258 (5083): 799–801. doi:10.1126/science.1439786. ISSN 0036-8075. PMID 1439786.
- ^ Göth, Anne (2007). "Incubation temperatures and sex ratios in Australian brush-turkey (Alectura lathami) mounds". Austral Ecology 32 (4): 278–85. doi:10.1111/j.1442-9993.2007.01709.x.
- ^ Belthoff, James R.; Dufty,; Gauthreaux, (1 August 1994). "Plumage Variation, Plasma Steroids and Social Dominance in Male House Finches". The Condor 96 (3): 614–25. doi:10.2307/1369464. ISSN 00105422.
- ^ Guthrie, R. Dale. "How We Use and Show Our Social Organs". Body Hot Spots: The Anatomy of Human Social Organs and Behavior. Archived from the original on June 21, 2007. http://web.archive.org/web/20070621225459/http://employees.csbsju.edu/lmealey/hotspots/chapter03.htm. Retrieved 2007-10-19.
- ^ Humphrey, Philip S. (1 June 1959). "An approach to the study of molts and plumages" (PDF). The Auk 76 (2): 1–31. doi:10.2307/3677029. ISSN 09088857. JSTOR 3677029. http://elibrary.unm.edu/sora/Auk/v076n01/p0001-p0031.pdf.
- ^ a b c Pettingill Jr. OS (1970). Ornithology in Laboratory and Field. Burgess Publishing Co. ISBN 808716093.
- ^ de Beer SJ, Lockwood GM, Raijmakers JHFS, Raijmakers JMH, Scott WA, Oschadleus HD, Underhill LG (2001). Web.uct.ac.za SAFRING Bird Ringing Manual.
- ^ Gargallo, Gabriel (1 June 1994). "Flight Feather Moult in the Red-Necked Nightjar Caprimulgus ruficollis". Journal of Avian Biology 25 (2): 119–24. doi:10.2307/3677029. ISSN 09088857. JSTOR 3677029.
- ^ Mayr, Ernst (1954). "The tail molt of small owls" (PDF). The Auk 71 (2): 172–78. http://elibrary.unm.edu/sora/Auk/v071n02/p0172-p0178.pdf.
- ^ Payne, Robert B. "Birds of the World, Biology 532". Bird Division, University of Michigan Museum of Zoology. http://www.ummz.umich.edu/birds/resources/families_otw.html. Retrieved 2007-10-20.
- ^ Turner, J. Scott (July 1997). "On the thermal capacity of a bird's egg warmed by a brood patch". Physiological Zoology 70 (4): 470–80. doi:10.1086/515854. ISSN 0031-935X. PMID 9237308.
- ^ Walther, Bruno A. (2005). "Elaborate ornaments are costly to maintain: evidence for high maintenance handicaps". Behavioural Ecology 16 (1): 89–95. doi:10.1093/beheco/arh135.
- ^ Shawkey, Matthew D.; Pillai, Shreekumar R.; Hill, Geoffrey E. (2003). "Chemical warfare? Effects of uropygial oil on feather-degrading bacteria". Journal of Avian Biology 34 (4): 345–49. doi:10.1111/j.0908-8857.2003.03193.x.
- ^ Ehrlich, Paul R. (1986). "The Adaptive Significance of Anting" (PDF). The Auk 103 (4): 835. http://elibrary.unm.edu/sora/Auk/v103n04/p0835-p0835.pdf.
- ^ Lucas, Alfred M. (1972). Avian Anatomy—integument. East Lansing, Michigan, US: USDA Avian Anatomy Project, Michigan State University. pp. 67, 344, 394–601.
- ^ Roots, Clive (2006). Flightless Birds. Westport: Greenwood Press. ISBN 978-0-313-33545-7.
- ^ McNab, Brian K. (October 1994). "Energy Conservation and the Evolution of Flightlessness in Birds". The American Naturalist 144 (4): 628–42. doi:10.1086/285697. JSTOR 2462941.
- ^ Kovacs, Christopher E.; Meyers, RA (May 2000). "Anatomy and histochemistry of flight muscles in a wing-propelled diving bird, the Atlantic Puffin, Fratercula arctica". Journal of Morphology 244 (2): 109–25. doi:10.1002/(SICI)1097-4687(200005)244:2<109::AID-JMOR2>3.0.CO;2-0. PMID 10761049.
- ^ Robert, Michel (January 1989). "Conditions and significance of night feeding in shorebirds and other water birds in a tropical lagoon" (PDF). The Auk 106 (1): 94–101. http://elibrary.unm.edu/sora/Auk/v106n01/p0094-p0101.pdf.
- ^ N Reid (2006). "Birds on New England wool properties - A woolgrower guide" (PDF). Land, Water & Wool Northern Tablelands Property Fact Sheet. Australian Government - Land and Water Australia. http://lwa.gov.au/files/products/land-water-and-wool/pf061365/pf061365.pdf. Retrieved 2010-07-17.
- ^ Paton, D. C.; Baker, . (1 April 1989). "Bills and tongues of nectar-feeding birds: A review of morphology, function, and performance, with intercontinental comparisons". Australian Journal of Ecology 14 (4): 473–506. doi:10.2307/1942194. ISSN 00129615. JSTOR 1942194.
- ^ Baker, Myron Charles; Baker, . (1 April 1973). "Niche Relationships Among Six Species of Shorebirds on Their Wintering and Breeding Ranges". Ecological Monographs 43 (2): 193–212. doi:10.2307/1942194. ISSN 00129615. JSTOR 1942194.
- ^ Cherel, Yves; Bocher, P; De Broyer, C; Hobson, KA (2002). "Food and feeding ecology of the sympatric thin-billed Pachyptila belcheri and Antarctic P. desolata prions at Iles Kerguelen, Southern Indian Ocean". Marine Ecology Progress Series 228: 263–81. doi:10.3354/meps228263.
- ^ Jenkin, Penelope M. (1957). "The Filter-Feeding and Food of Flamingoes (Phoenicopteri)". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 240 (674): 401–93. doi:10.1098/rstb.1957.0004. JSTOR 92549.
- ^ Miyazaki, Masamine; Kuroki, M.; Niizuma, Y.; Watanuki, Y. (1 July 1996). "Vegetation cover, kleptoparasitism by diurnal gulls and timing of arrival of nocturnal Rhinoceros Auklets" (PDF). The Auk 113 (3): 698–702. doi:10.2307/3677021. ISSN 09088857. JSTOR 3677021. http://elibrary.unm.edu/sora/Auk/v113n03/p0698-p0702.pdf.
- ^ Bélisle, Marc; Giroux (1 August 1995). "Predation and kleptoparasitism by migrating Parasitic Jaegers" (PDF). The Condor 97 (3): 771–781. doi:10.2307/1369185. ISSN 00105422. http://elibrary.unm.edu/sora/Condor/files/issues/v097n03/p0771-p0781.pdf.
- ^ Vickery, J. A.; Brooke, . (1 May 1994). "The Kleptoparasitic Interactions between Great Frigatebirds and Masked Boobies on Henderson Island, South Pacific" (PDF). The Condor 96 (2): 331–40. doi:10.2307/1369318. ISSN 00105422. JSTOR 1369318. http://elibrary.unm.edu/sora/Condor/files/issues/v096n02/p0331-p0340.pdf.
- ^ Hiraldo, F.C.; Blanco, J. C.; Bustamante, J. (1991). "Unspecialized exploitation of small carcasses by birds". Bird Studies 38 (3): 200–07. doi:10.1080/00063659109477089.
- ^ Engel, Sophia Barbara (2005). Racing the wind: Water economy and energy expenditure in avian endurance flight. University of Groningen. ISBN 90-367-2378-7. http://irs.ub.rug.nl/ppn/287916626.
- ^ Tieleman, BI; Williams, JB (January 1999). "The role of hyperthermia in the water economy of desert birds". Physiol. Biochem. Zool. 72 (1): 87–100. doi:10.1086/316640. ISSN 1522-2152. PMID 9882607.
- ^ Schmidt-Nielsen, Knut (1 May 1960). "The Salt-Secreting Gland of Marine Birds". Circulation 21 (5): 955–967. http://circ.ahajournals.org/cgi/content/abstract/21/5/955.
- ^ Hallager, Sara L. (1994). "Drinking methods in two species of bustards". Wilson Bull. 106 (4): 763–764. http://hdl.handle.net/10088/4338.
- ^ MacLean, Gordon L. (1 June 1983). "Water Transport by Sandgrouse". BioScience 33 (6): 365–369. doi:10.2307/1309104. ISSN 00063568. JSTOR 1309104.
- ^ Eraud C; Dorie A; Jacquet A & Faivre B (2008). "The crop milk: a potential new route for carotenoid-mediated parental effects". Journal of Avian Biology 39 (2): 247–251. doi:10.1111/j.0908-8857.2008.04053.x.
- ^ Klaassen, Marc (1 January 1996). "Metabolic constraints on long-distance migration in birds". Journal of Experimental Biology 199 (1): 57–64. ISSN 0022-0949. PMID 9317335. http://jeb.biologists.org/cgi/reprint/199/1/57.
- ^ Gill, Frank (1995). Ornithology (2nd ed.). New York: W.H. Freeman. ISBN 0-7167-2415-4.
- ^ "Long-distance Godwit sets new record". BirdLife International. 2007-05-04. http://www.birdlife.org/news/news/2007/04/bar-tailed_godwit_journey.html. Retrieved 2007-12-13.
- ^ Shaffer, Scott A.; Tremblay, Y; Weimerskirch, H; Scott, D; Thompson, DR; Sagar, PM; Moller, H; Taylor, GA et al. (August 2006). "Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer". Proceedings of the National Academy of Sciences 103 (34): 12799–802. doi:10.1073/pnas.0603715103. ISSN 0027-8424. PMC 1568927. PMID 16908846. http://www.pnas.org/cgi/pmidlookup?view=long&pmid=16908846.
- ^ Croxall, John P.; Silk, JR; Phillips, RA; Afanasyev, V; Briggs, DR (January 2005). "Global Circumnavigations: Tracking year-round ranges of nonbreeding Albatrosses". Science 307 (5707): 249–50. doi:10.1126/science.1106042. ISSN 0036-8075. PMID 15653503.
- ^ Wilson, W. Herbert, Jr. (1999). "Bird feeding and irruptions of northern finches:are migrations short stopped?" (PDF). North America Bird Bander 24 (4): 113–21. http://elibrary.unm.edu/sora/NABB/v024n04/p0113-p0121.pdf.
- ^ Nilsson, Anna L. K.; Alerstam, Thomas; Nilsson, Jan-Åke (2006). "Do partial and regular migrants differ in their responses to weather?". The Auk 123 (2): 537–47. doi:10.1642/0004-8038(2006)123[537:DPARMD]2.0.CO;2. ISSN 0004-8038. http://findarticles.com/p/articles/mi_qa3793/is_200604/ai_n16410121.
- ^ Chan, Ken (2001). "Partial migration in Australian landbirds: a review". Emu 101 (4): 281–92. doi:10.1071/MU00034.
- ^ Rabenold, Kerry N. (1985). "Variation in Altitudinal Migration, Winter Segregation, and Site Tenacity in two subspecies of Dark-eyed Juncos in the southern Appalachians" (PDF). The Auk 102 (4): 805–19. http://elibrary.unm.edu/sora/Auk/v102n04/p0805-p0819.pdf.
- ^ Collar, Nigel J. (1997). "Family Psittacidae (Parrots)". In Josep del Hoyo, Andrew Elliott and Jordi Sargatal (eds.). Handbook of the Birds of the World, Volume 4: Sandgrouse to Cuckoos. Barcelona: Lynx Edicions. ISBN 84-87334-22-9.
- ^ Matthews, G. V. T. (1 September 1953). "Navigation in the Manx Shearwater". Journal of Experimental Biology 30 (2): 370–96. http://jeb.biologists.org/cgi/reprint/30/3/370.
- ^ Mouritsen, Henrik; L (15 November 2001). "Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass". Journal of Experimental Biology 204 (8): 3855–65. ISSN 0022-0949. PMID 11807103. http://jeb.biologists.org/cgi/content/full/204/22/3855.
- ^ Deutschlander, Mark E.; P; B (15 April 1999). "The case for light-dependent magnetic orientation in animals". Journal of Experimental Biology 202 (8): 891–908. ISSN 0022-0949. PMID 10085262. http://jeb.biologists.org/cgi/reprint/202/8/891.
- ^ Möller, Anders Pape (1988). "Badge size in the house sparrow Passer domesticus". Behavioral Ecology and Sociobiology 22 (5): 373–78.
- ^ Thomas, Betsy Trent; Strahl (1 August 1990). "Nesting Behavior of Sunbitterns (Eurypyga helias) in Venezuela" (PDF). The Condor 92 (3): 576–81. doi:10.2307/1368675. ISSN 00105422. http://elibrary.unm.edu/sora/Condor/files/issues/v092n03/p0576-p0581.pdf.
- ^ Pickering, S. P. C. (2001). "Courtship behaviour of the Wandering Albatross Diomedea exulans at Bird Island, South Georgia" (PDF). Marine Ornithology 29 (1): 29–37. http://www.marineornithology.org/PDF/29_1/29_1_6.pdf.
- ^ Pruett-Jones, S. G.; Pruett-Jones (1 May 1990). "Sexual Selection Through Female Choice in Lawes' Parotia, A Lek-Mating Bird of Paradise". Evolution 44 (3): 486–501. doi:10.2307/2409431. ISSN 00143820.
- ^ Genevois, F.; Bretagnolle, V. (1994). "Male Blue Petrels reveal their body mass when calling". Ethology Ecology and Evolution 6 (3): 377–83. doi:10.1080/08927014.1994.9522988. http://ejour-fup.unifi.it/index.php/eee/article/view/667/613.
- ^ Jouventin, Pierre; Aubin, T; Lengagne, T (June 1999). "Finding a parent in a king penguin colony: the acoustic system of individual recognition". Animal Behaviour 57 (6): 1175–83. doi:10.1006/anbe.1999.1086. ISSN 0003-3472. PMID 10373249.
- ^ Templeton, Christopher N.; Greene, E; Davis, K (June 2005). "Allometry of Alarm Calls: Black-Capped Chickadees Encode Information About Predator Size". Science 308 (5730): 1934–37. doi:10.1126/science.1108841. ISSN 0036-8075. PMID 15976305.
- ^ Miskelly, C. M. (July 1987). "The identity of the hakawai" (PDF). Notornis 34 (2): 95–116. http://www.notornis.org.nz/free_issues/Notornis_34-1987/Notornis_34_2.pdf.
- ^ Murphy, Stephen; Legge, Sarah; Heinsohn, Robert (2003). "The breeding biology of palm cockatoos (Probosciger aterrimus): a case of a slow life history". Journal of Zoology 261 (4): 327–39. doi:10.1017/S0952836903004175.
- ^ a b Sekercioglu, Cagan Hakki (2006). "Foreword". In Josep del Hoyo, Andrew Elliott and David Christie (eds.). Handbook of the Birds of the World, Volume 11: Old World Flycatchers to Old World Warblers. Barcelona: Lynx Edicions. p. 48. ISBN 84-96553-06-X.
- ^ Terborgh, John (2005). "Mixed flocks and polyspecific associations: Costs and benefits of mixed groups to birds and monkeys". American Journal of Primatology 21 (2): 87–100. doi:10.1002/ajp.1350210203.
- ^ Hutto, Richard L. (1 January 988). "Foraging Behavior Patterns Suggest a Possible Cost Associated with Participation in Mixed-Species Bird Flocks". Oikos 51 (1): 79–83. doi:10.2307/3565809. ISSN 00301299. JSTOR 3565809.
- ^ Au, David W. K.; Pitman (1 August 1986). "Seabird interactions with Dolphins and Tuna in the Eastern Tropical Pacific" (PDF). The Condor 88 (3): 304–17. doi:10.2307/1368877. ISSN 00105422. http://elibrary.unm.edu/sora/Condor/files/issues/v088n03/p0304-p0317.pdf.
- ^ Anne, O.; Rasa, E. (June 1983). "Dwarf mongoose and hornbill mutualism in the Taru desert, Kenya". Behavioral Ecology and Sociobiology 12 (3): 181–90. doi:10.1007/BF00290770.
- ^ Gauthier-Clerc, Michael; Tamisier, Alain; Cézilly, Frank (May 2000). "Sleep-Vigilance Trade-off in Gadwall during the Winter Period" (PDF). The Condor 102 (2): 307–13. doi:10.1650/0010-5422(2000)102[0307:SVTOIG]2.0.CO;2. ISSN 0010-5422. http://elibrary.unm.edu/sora/Condor/files/issues/v102n02/p0307-p0313.pdf.
- ^ Bäckman, Johan; A (1 April 2002). "Harmonic oscillatory orientation relative to the wind in nocturnal roosting flights of the swift Apus apus". The Journal of Experimental Biology 205 (7): 905–910. ISSN 0022-0949. PMID 11916987. http://jeb.biologists.org/cgi/content/full/205/7/905.
- ^ Rattenborg, NC (September 2006). "Do birds sleep in flight?". Die Naturwissenschaften 93 (9): 413–25. doi:10.1007/s00114-006-0120-3. ISSN 0028-1042. PMID 16688436.
- ^ Milius, S. (6 February 1999). "Half-asleep birds choose which half dozes". Science News Online 155 (6): 86. doi:10.2307/4011301. ISSN 00368423. JSTOR 4011301. http://findarticles.com/p/articles/mi_m1200/is_6_155/ai_53965042.
- ^ Beauchamp, Guy (1999). "The evolution of communal roosting in birds: origin and secondary losses". Behavioural Ecology 10 (6): 675–87. doi:10.1093/beheco/10.6.675. http://beheco.oxfordjournals.org/cgi/content/full/10/6/675.
- ^ Buttemer, William A. (1985). "Energy relations of winter roost-site utilization by American goldfinches (Carduelis tristis)" (PDF). Oecologia 68 (1): 126–32. doi:10.1007/BF00379484. http://deepblue.lib.umich.edu/bitstream/2027.42/47760/1/442_2004_Article_BF00379484.pdf.
- ^ Buckley, F. G.; Buckley (1 January 1968). "Upside-down Resting by Young Green-Rumped Parrotlets (Forpus passerinus)". The Condor 70 (1): 89. doi:10.2307/1366517. ISSN 00105422.
- ^ Carpenter, F. Lynn (February 1974). "Torpor in an Andean Hummingbird: Its Ecological Significance". Science 183 (4124): 545–47. doi:10.1126/science.183.4124.545. ISSN 0036-8075. PMID 17773043.
- ^ McKechnie, Andrew E.; Ashdown, Robert A. M.; Christian, Murray B.; Brigham, R. Mark (2007). "Torpor in an African caprimulgid, the freckled nightjar Caprimulgus tristigma". Journal of Avian Biology 38 (3): 261–66. doi:10.1111/j.2007.0908-8857.04116.x.
- ^ Frith, C.B (1981). "Displays of Count Raggi's Bird-of-Paradise Paradisaea raggiana and congeneric species". Emu 81 (4): 193–201. doi:10.1071/MU9810193. http://www.publish.csiro.au/paper/MU9810193.htm.
- ^ Freed, Leonard A. (1987). "The Long-Term Pair Bond of Tropical House Wrens: Advantage or Constraint?". The American Naturalist 130 (4): 507–25. doi:10.1086/284728.
- ^ Gowaty, Patricia A. (1983). "Male Parental Care and Apparent Monogamy among Eastern Bluebirds (Sialia sialis)". The American Naturalist 121 (2): 149–60. doi:10.1086/284047.
- ^ Westneat, David F.; Stewart, Ian R.K. (2003). "Extra-pair paternity in birds: Causes, correlates, and conflict". Annual Review of Ecology, Evolution, and Systematics 34: 365–96. doi:10.1146/annurev.ecolsys.34.011802.132439. http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.ecolsys.34.011802.132439.
- ^ Gowaty, Patricia A.; Buschhaus, Nancy (1998). "Ultimate causation of aggressive and forced copulation in birds: Female resistance, the CODE hypothesis, and social monogamy". American Zoologist 38 (1): 207–25. doi:10.1093/icb/38.1.207. http://findarticles.com/p/articles/mi_qa3746/is_199802/ai_n8791262.
- ^ Sheldon, B (1994). "Male Phenotype, Fertility, and the Pursuit of Extra-Pair Copulations by Female Birds". Proceedings: Biological Sciences 257 (1348): 25–30. doi:10.1098/rspb.1994.0089.
- ^ Wei, G; Zuo-Hua, Yin; Fu-Min, Lei (2005). "Copulations and mate guarding of the Chinese Egret". Waterbirds 28 (4): 527–30. doi:10.1675/1524-4695(2005)28[527:CAMGOT]2.0.CO;2. ISSN 1524-4695.
- ^ Short, Lester L. (1993). Birds of the World and their Behavior. New York: Henry Holt and Co. ISBN 0-8050-1952-9.
- ^ Burton, R (1985). Bird Behavior. Alfred A. Knopf, Inc. ISBN 0-394-53957-5.
- ^ Schamel, D; Tracy, Diane M.; Lank, David B.; Westneat, David F. (2004). "Mate guarding, copulation strategies and paternity in the sex-role reversed, socially polyandrous red-necked phalarope Phalaropus lobatus" (PDF). Behaviour Ecology and Sociobiology 57 (2): 110–18. doi:10.1007/s00265-004-0825-2. http://www.springerlink.com/index/8BE48GKGYF2Q40LT.pdf.
- ^ Bagemihl, Bruce. Biological exuberance: Animal homosexuality and natural diversity. New York: St. Martin's, 1999. Pp. 479-655. One hundred species are described in detail.
- ^ Kokko, H; Harris, M; Wanless, S (2004). "Competition for breeding sites and site-dependent population regulation in a highly colonial seabird, the common guillemot Uria aalge". Journal of Animal Ecology 73 (2): 367–76. doi:10.1111/j.0021-8790.2004.00813.x.
- ^ Booker, L; Booker, M (1991). "Why Are Cuckoos Host Specific?". Oikos 57 (3): 301–09. doi:10.2307/3565958. JSTOR 3565958.
- ^ a b Hansell M (2000). Bird Nests and Construction Behaviour. University of Cambridge Press ISBN 0-521-46038-7
- ^ Lafuma, L; Lambrechts, M; Raymond, M (2001). "Aromatic plants in bird nests as a protection against blood-sucking flying insects?". Behavioural Processes 56 (2): 113–20. doi:10.1016/S0376-6357(01)00191-7.
- ^ Warham, J. (1990) The Petrels: Their Ecology and Breeding Systems London: Academic Press ISBN 0-12-735420-4.
- ^ Jones DN, Dekker, René WRJ, Roselaar, Cees S (1995). The Megapodes. Bird Families of the World 3. Oxford University Press: Oxford. ISBN 0-19-854651-3
- ^ Elliot A (1994). "Family Megapodiidae (Megapodes)" in Handbook of the Birds of the World. Volume 2; New World Vultures to Guineafowl (eds del Hoyo J, Elliott A, Sargatal J) Lynx Edicions:Barcelona. ISBN 84-87337-15-6
- ^ Metz VG, Schreiber EA (2002). "Great Frigatebird (Fregata minor)" In The Birds of North America, No 681, (Poole, A. and Gill, F., eds) The Birds of North America Inc: Philadelphia
- ^ Ekman, J (2006). "Family living amongst birds". Journal of Avian Biology 37 (4): 289–98. doi:10.1111/j.2006.0908-8857.03666.x.
- ^ Cockburn A (1996). "Why do so many Australian birds cooperate? Social evolution in the Corvida". In Floyd R, Sheppard A, de Barro P. Frontiers in Population Ecology. Melbourne: CSIRO. pp. 21–42.
- ^ Cockburn, Andrew (June 2006). "Prevalence of different modes of parental care in birds" (Free full text). Proceedings: Biological Sciences 273 (1592): 1375–83. doi:10.1098/rspb.2005.3458. ISSN 0962-8452. PMC 1560291. PMID 16777726. http://rspb.royalsocietypublishing.org/cgi/pmidlookup?view=long&pmid=16777726.
- ^ Gaston AJ (1994). Ancient Murrelet (Synthliboramphus antiquus). In The Birds of North America, No. 132 (A. Poole and F. Gill, Eds.). Philadelphia: The Academy of Natural Sciences; Washington, D.C.: The American Ornithologists' Union.
- ^ Schaefer, HC; Eshiamwata, GW; Munyekenye, FB; Bohning-Gaese, K (2004). "Life-history of two African Sylvia warblers: low annual fecundity and long post-fledging care". Ibis 146 (3): 427–37. doi:10.1111/j.1474-919X.2004.00276.x.
- ^ Alonso, JC; Bautista, LM; Alonso, JA (2004). "Family-based territoriality vs flocking in wintering common cranes Grus grus". Journal of Avian Biology 35 (5): 434–44. doi:10.1111/j.0908-8857.2004.03290.x.
- ^ a b Davies N (2000). Cuckoos, Cowbirds and other Cheats. T. & A. D. Poyser: London ISBN 0-85661-135-2
- ^ Sorenson, M (1997). "Effects of intra- and interspecific brood parasitism on a precocial host, the canvasback, Aythya valisineria". Behavioral Ecology 8 (2): 153–61. doi:10.1093/beheco/8.2.153. http://beheco.oxfordjournals.org/cgi/reprint/8/2/153.pdf.
- ^ Spottiswoode, C. N.; Colebrook-Robjent, J. F.R. (2007). "Egg puncturing by the brood parasitic Greater Honeyguide and potential host counteradaptations". Behavioral Ecology 18 (4): 792. doi:10.1093/beheco/arm025.
- ^ a b Clout, M; Hay, J (1989). "The importance of birds as browsers, pollinators and seed dispersers in New Zealand forests". New Zealand Journal of Ecology 12: 27–33. http://www.newzealandecology.org/nzje/free_issues/NZJEcol12_s_27.pdf.
- ^ Gary Stiles, F. (1981). "Geographical Aspects of Bird-Flower Coevolution, with Particular Reference to Central America". Annals of the Missouri Botanical Garden 68 (2): 323–51. doi:10.2307/2398801. JSTOR 2398801.
- ^ Temeles, E; Linhart, Y; Masonjones, M; Masonjones, H (2002). "The Role of Flower Width in Hummingbird Bill Length–Flower Length Relationships". Biotropica 34 (1): 68–80. http://www.amherst.edu/~ejtemeles/Temeles%20et%20al%202002%20biotropica.pdf.
- ^ Bond, William J.; Lee, William G.; Craine, Joseph M. (2004). "Plant structural defences against browsing birds: a legacy of New Zealand's extinct moas". Oikos 104 (3): 500–08. doi:10.1111/j.0030-1299.2004.12720.x.
- ^ Wainright, S; Haney, J; Kerr, C; Golovkin, A; Flint, M (1998). "Utilization of nitrogen derived from seabird guano by terrestrial and marine plants at St. Paul, Pribilof Islands, Bering Sea, Alaska". Marine Ecology 131 (1): 63–71. http://www.springerlink.com/index/DN8D70RYM7TUF42P.pdf.
- ^ Bosman, A; Hockey, A (1986). "Seabird guano as a determinant of rocky intertidal community structure". Marine Ecology Progress Series 32: 247–57. doi:10.3354/meps032247. http://www.int-res.com/articles/meps/32/m032p247.pdf.
- ^ Bonney, Rick; Rohrbaugh, Jr., Ronald (2004). Handbook of Bird Biology (Second ed.). Princeton, NJ: Princeton University Press. ISBN 0-938027-62-X.
- ^ Dean W, Siegfried R, MacDonald I (1990). "The Fallacy, Fact, and Fate of Guiding Behavior in the Greater Honeyguide". Conservation Biology 4 (1) 99–101. Blackwell-PDF
- ^ Singer, R.; Yom-Tov, Y. (1988). "The Breeding Biology of the House Sparrow Passer domesticus in Israel". Ornis Scandinavica 19 (2): 139–44. doi:10.2307/3676463. JSTOR 3676463.
- ^ Dolbeer, R (1990). "Ornithology and integrated pest management: Red-winged blackbirds Agleaius phoeniceus and corn". Ibis 132 (2): 309–22. doi:10.1111/j.1474-919X.1990.tb01048.x.
- ^ Dolbeer, R; Belant, J; Sillings, J (1993). "Shooting Gulls Reduces Strikes with Aircraft at John F. Kennedy International Airport". Wildlife Society Bulletin 21: 442–50.
- ^ Reed, KD; Meece, JK; Henkel, JS; Shukla, SK (2003). "Birds, migration and emerging zoonoses: west nile virus, lyme disease, influenza a and enteropathogens". Clinical medicine & research 1 (1): 5–12. doi:10.3121/cmr.1.1.5. PMC 1069015. PMID 15931279. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1069015.
- ^ "Shifting protein sources: Chapter 3: Moving Up the Food Chain Efficiently.". Earth Policy Institute. http://www.earth-policy.org/Books/Out/Ote3_3.htm. Retrieved 18 December 2007.
- ^ Simeone, A; Navarro, X (2002). "Human exploitation of seabirds in coastal southern Chile during the mid-Holocene". Rev. Chil. Hist. Nat 75 (2): 423–31. doi:10.4067/S0716-078X2002000200012. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-078X2002000200012&lng=es&nrm=iso&tlng=en.
- ^ Hamilton, S. (2000). "How precise and accurate are data obtained using. an infra-red scope on burrow-nesting sooty shearwaters Puffinus griseus?". Marine Ornithology 28 (1): 1–6. http://www.marineornithology.org/PDF/28_1/28_1_1.pdf.
- ^ Keane, Aidan; Brooke, M.de L.; McGowan, P.J.K. (2005). "Correlates of extinction risk and hunting pressure in gamebirds (Galliformes)". Biological Conservation 126 (2): 216–33. doi:10.1016/j.biocon.2005.05.011.
- ^ "The Guano War of 1865–1866.". World History at KMLA. http://www.zum.de/whkmla/military/19cen/guanowar.html. Retrieved 18 December 2007.
- ^ Cooney, R; Jepson, P (2006). "The international wild bird trade: what's wrong with blanket bans?". Oryx 40 (1): 18–23. doi:10.1017/S0030605306000056. http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=409231.
- ^ Manzi, M; Coomes, O. T. (2002). "Cormorant fishing in Southwestern China: a Traditional Fishery under Siege. (Geographical Field Note)". Geographic Review 92 (4): 597–603. doi:10.2307/4140937. JSTOR 4140937. http://findarticles.com/p/articles/mi_go1895/is_200210/ai_n8674873.
- ^ Pullis La Rouche, G. (2006). Birding in the United States: a demographic and economic analysis. Waterbirds around the world. Eds. G.C. Boere, C.A. Galbraith and D.A. Stroud. The Stationery Office, Edinburgh, UK. pp. 841–46. JNCC.gov.uk, PDF
- ^ Chamberlain, DE; Vickery, JA; Glue, DE; Robinson, RA; Conway, GJ; Woodburn, RJW; Cannon, AR (2005). "Annual and seasonal trends in the use of garden feeders by birds in winter". Ibis 147 (3): 563–75. doi:10.1111/j.1474-919x.2005.00430.x. http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1474-919x.2005.00430.x.
- ^ Routledge, S; Routledge, K (1917). "The Bird Cult of Easter Island". Folklore 28 (4): 337–55.
- ^ Lukas, SE; Benedikt, R; Mendelson, JH; Kouri, E; Sholar, M; Amass, L (1992). "Marihuana attenuates the rise in plasma ethanol levels in human subjects". Neuropsychopharmacology 7 (1): 77–81. doi:10.1371/journal.pbio.0040014. PMID 1326277.
- ^ Ingersoll, Ernest (1923). Archive.org, "Birds in legend, fable and folklore". Longmans, Green and co. p. 214
- ^ Hauser, A. J. (1985). "Jonah: In Pursuit of the Dove". Journal of Biblical Literature 104 (1): 21–37. doi:10.2307/3260591. JSTOR 3260591.
- ^ Thankappan Nair, P. (1974). "The Peacock Cult in Asia". Asian Folklore Studies 33 (2): 93–170. doi:10.2307/1177550. JSTOR 1177550.
- ^ Tennyson A, Martinson P (2006). Extinct Birds of New Zealand Te Papa Press, Wellington ISBN 978-0-909010-21-8
- ^ Meighan, C. W. (1966). "Prehistoric Rock Paintings in Baja California". American Antiquity 31 (3): 372–92. doi:10.2307/2694739. JSTOR 2694739.
- ^ Clarke, CP (1908). "A Pedestal of the Platform of the Peacock Throne". The Metropolitan Museum of Art Bulletin 3 (10): 182–83. doi:10.2307/3252550. JSTOR 3252550.
- ^ Boime, Albert (1999). "John James Audubon: a birdwatcher's fanciful flights". Art History 22 (5): 728–55. doi:10.1111/1467-8365.00184.
- ^ Chandler, A (1934). "The Nightingale in Greek and Latin Poetry". The Classical Journal 30 (2): 78–84.
- ^ Lasky, E. D. (1992). "A Modern Day Albatross: The Valdez and Some of Life's Other Spills". The English Journal 81 (3): 44–46. doi:10.2307/820195. JSTOR 820195.
- ^ Carson, A (1998). "Vulture Investors, Predators of the 90s: An Ethical Examination". Journal of Business Ethics 17 (5): 543–55. http://www.springerlink.com/index/W676R8803NL06L38.pdf.
- ^ Enriquez PL, Mikkola H (1997). "Comparative study of general public owl knowledge in Costa Rica, Central America and Malawi, Africa". pp. 160–66 In: J.R. Duncan, D.H. Johnson, T.H. Nicholls, (Eds). Biology and conservation of owls of the Northern Hemisphere. General Technical Report NC-190, USDA Forest Service, St. Paul, Minnesota. 635 pp.
- ^ Lewis DP (2005). Owlpages.com, Owls in Mythology and Culture. Retrieved on 15 September 2007
- ^ Dupree, N (1974). "An Interpretation of the Role of the Hoopoe in Afghan Folklore and Magic". Folklore 85 (3): 173–93.
- ^ Fuller E (2000). Extinct Birds (2nd ed.). Oxford University Press, Oxford, New York. ISBN 0-19-850837-9
- ^ Steadman D (2006). Extinction and Biogeography in Tropical Pacific Birds, University of Chicago Press. ISBN 978-0-226-77142-7
- ^ "BirdLife International announces more Critically Endangered birds than ever before". Birdlife International. 14 May 2009. http://www.birdlife.org/news/pr/2009/05/red_list.html. Retrieved 15 May 2009.
- ^ Kinver, Mark (13 May 2009). "Birds at risk reach record high". BBC News Online. http://news.bbc.co.uk/2/hi/science/nature/8045971.stm. Retrieved 15 May 2009.
- ^ Norris K, Pain D (eds, 2002). Conserving Bird Biodiversity: General Principles and their Application Cambridge University Press. ISBN 978-0-521-78949-3
- ^ Brothers, NP (1991). "Albatross mortality and associated bait loss in the Japanese longline fishery in the southern ocean". Biological Conservation 55 (3): 255–68. doi:10.1016/0006-3207(91)90031-4.
- ^ Wurster, D; Wurster, C; Strickland, W (1965). "Bird Mortality Following DDT Spray for Dutch Elm Disease". Ecology 46 (4): 488–99. doi:10.2307/1934880.; Wurster, C. F.; Wurster, D. H.; Strickland, W. N. (1965). "Bird Mortality after Spraying for Dutch Elm Disease with DDT". Science 148 (3666): 90–91. doi:10.1126/science.148.3666.90.
- ^ Blackburn, T; Cassey, P; Duncan, R; Evans, K; Gaston, K (2004). "Avian Extinction and Mammalian Introductions on Oceanic Islands". Science 305 (5692): 1955–58. doi:10.1126/science.1101617. PMID 15448269.
- ^ Butchart, S; Stattersfield, A; Collar, N (2006). "How many bird extinctions have we prevented?". Oryx 40 (3): 266–79. doi:10.1017/S0030605306000950. http://www.birdlife.org/news/news/2006/08/butchart_et_al_2006.pdf.
External links
- Avibase—The World Bird Database
- Birdlife International—Dedicated to bird conservation worldwide; has a database with about 250,000 records on endangered bird species.
- Bird biogeography
- Birds and Science from the National Audubon Society
- Cornell Lab of Ornithology
- Essays on bird biology
- International Ornithological Committee
- North American Birds for Kids
- Ornithology
- Sora—Searchable online research archive; Archives of the following ornithological journals The Auk, Condor, Journal of Field Ornithology, North American Bird Bander, Studies in Avian Biology, Pacific Coast Avifauna, and the Wilson Bulletin.
- The Internet Bird Collection—A free library of videos of the world's birds
- The Institute for Bird Populations, California
- list of field guides to birds, from the International Field Guides database
- RSPB bird identifier—Interactive identification of all UK birds
Extant Chordata classes by subphylum Kingdom Animalia · Subkingdom Eumetazoa · (unranked) Bilateria · Superphylum Deuterostomia Urochordata (Tunicates) Cephalochordata (Lancelets) Craniata Archosauromorphs Kingdom: Animalia · Phylum: Chordata · Class: Sauropsida · Subclass: Diapsida Primitive
ArchosauromorphsPrimitive
ArchosauriformsCrurotarsi Archosaurs Avemetatarsalia and
Ornithodira ArchosaursAvian Archosaurs Avialae • Archaeopteryx • Confuciusornis • Ichthyornis • Enantiornithes • Hesperornithes • Neornithes • Palaeognathae • NeognathaeCategories:- Birds
- Animals
- Biological pest control
- Dinosaurs
Wikimedia Foundation. 2010.
Look at other dictionaries:
Bird — ist der Familienname folgender Personen: Adrian Peter Bird, britischer Genetiker Andrew Bird (Filmeditor) (* 1957), britischer Filmeditor und Übersetzer Andrew Bird (Ruderer) (* 1967), neuseeländischer Ruderer Andrew Bird (Musiker) (* 1973), US… … Deutsch Wikipedia
BIRD — (homonymie) Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. {{{image}}} Sigles d une seule lettre Sigles de deux lettres Sigles de trois lettres … Wikipédia en Français
Bird — (b[ e]rd), n. [OE. brid, bred, bird, young bird, bird, AS. bridd young bird. [root]92.] 1. Orig., a chicken; the young of a fowl; a young eaglet; a nestling; and hence, a feathered flying animal (see 2). [1913 Webster] That ungentle gull, the… … The Collaborative International Dictionary of English
bird — W2S2 [bə:d US bə:rd] n [: Old English; Origin: bridd] 1.) a creature with wings and feathers that can usually fly. Many birds sing and build nests, and female birds lay eggs. ▪ wild birds ▪ The dawn was filled with the sound of birds. ▪ a flock… … Dictionary of contemporary English
bird — ► NOUN 1) a warm blooded egg laying vertebrate animal which has feathers, wings, and a beak, and typically is able to fly. 2) informal a person of a specified kind or character: she s a sharp old bird. 3) Brit. informal a young woman or… … English terms dictionary
bird — [bʉrd] n. [ME bird, brid < OE bridd, bird, orig., young bird] 1. any of a class (Aves) of warmblooded, two legged, egg laying vertebrates with feathers and wings 2. a small game bird: distinguished from WATERFOWL 3. a clay pigeon in… … English World dictionary
bird — [ bɜrd ] noun count *** 1. ) an animal covered in feathers, with two wings for flying and a hard pointed mouth called a beak or a bill. Birds build nests, in which female birds lay eggs. 2. ) OLD FASHIONED a particular type of person: She s a… … Usage of the words and phrases in modern English
BIRD — bezeichnet einen Kleinsatelliten des Deutschen Zentrums für Luft und Raumfahrt (DLR), der am DLR Standort Berlin Adlershof unter Mitarbeit anderer DLR Standorte entwickelt und gebaut wurde. Wesentliche Komponenten und Beiträge stammen vom… … Deutsch Wikipedia
bird|ie — «BUR dee», noun, verb, bird|ied, bird|y|ing. –n. 1. a little bird. 2. a score of one stroke less than par for any hole on a golf course. 3. = shuttlecock. (Cf. ↑shutt … Useful english dictionary
bird|y — «BUR dee», adjective, bird|i|er, bird|i|est. 1. resembling or suggesting a bird: »Pauline made birdy, disapproving vibrations with her head (New Yorker). 2 … Useful english dictionary
bird|er — «BUR duhr», noun. 1. a person who breeds birds. 2. = bird watcher. (Cf. ↑bird watcher) … Useful english dictionary