- Triassic
Geological period
from=251
middle=225
to=199
o2=16
co2=1750
temp=17The Triassic is a geologic period and system that extends from about 251 to 199 Ma (million years ago). As the first period of theMesozoic Era, the Triassic follows thePermian and is followed by theJurassic . Both the start and end of the Triassic are marked by majorextinction event s. The extinction event that closed the Triassic period has recently been more accurately dated, but as with most older geologic periods, the rock beds that define the start and end are well identified, but the exact dates of the start and end of the period are uncertain by a few million years.During the Triassic, both marine and continental life show an
adaptive radiation beginning from the starkly impoverishedbiosphere that followed the Permian-Triassic extinction. Corals of thehexacorallia group made their first appearance. The first flowering plants (Angiosperms) may have evolved during the Triassic, as did the first flying vertebrates, thepterosaur s.Dating and subdivisions
The Triassic was named in 1834 by
Friedrich Von Alberti from the three distinct layers (Latin "trias" meaning ) —red bed s, capped bychalk , followed by blackshale s— that are found throughoutGermany and northwestEurope , called the 'Trias'.The Triassic is usually separated into Early, Middle, and
Late Triassic Epochs, and the corresponding rocks are referred to as Lower, Middle, or Upper Triassic. Thefaunal stages from the youngest to oldest are:Paleogeography
During the Triassic, almost all the Earth's land mass was concentrated into a single
supercontinent centered more or less on the equator, calledPangaea ("all the land"). From the east a vast gulf entered Pangaea, the Tethys sea. It opened farther westward in the mid-Triassic, at the expense of the shrinkingPaleo-Tethys Ocean , an ocean that existed during thePaleozoic . The remaining shores were surrounded by the world-ocean known asPanthalassa ("all the sea"). All the deep-ocean sediments laid down during the Triassic have disappeared throughsubduction of oceanic plates; thus, very little is known of the Triassic open ocean.The supercontinent Pangaea was rifting during the Triassic—especially late in the period—but had not yet separated. The first nonmarine sediments in therift that marks the initial break-up of Pangea—which separatedNew Jersey fromMorocco —are of Late Triassic age; in the U.S., these thick sediments comprise theNewark Group . [ [http://rainbow.ldeo.columbia.edu/courses/v1001/10.html Lecture 10 - Triassic: Newark, Chinle ] ] Because of the limited shoreline of one super-continental mass, Triassic marine deposits are globally relatively rare, despite their prominence inWestern Europe , where the Triassic was first studied. InNorth America , for example, marine deposits are limited to a few exposures in the west. Thus Triassicstratigraphy is mostly based on organisms living in lagoons and hypersaline environments, such as "Estheria " crustaceans.Climate
The Triassic climate was generally hot and dry, forming typical red bed
sandstone s andevaporite s. There is no evidence of glaciation at or near either pole; in fact, the polar regions were apparently moist andtemperate , a climate suitable for reptile-like creatures. Pangaea's large size limited the moderating effect of the global ocean; itscontinental climate was highly seasonal, with very hot summers and cold winters. [Stanley, 452-3.] It probably had strong,cross -equator ialmonsoons . [Stanley, 452-3.]Life
Three categories of organisms can be distinguished in the Triassic record: holdovers from the
Permian-Triassic extinction , new groups which flourished briefly, and other new groups which went on to dominate theMesozoic world.In marine environments, new modern types of
corals appeared in the Early Triassic, forming small patches ofreefs of modest extent compared to the great reef systems ofDevonian times or modern reefs. The shelledcephalopod s calledammonite s recovered, diversifying from a single line that survived the Permian extinction. The fish fauna was remarkably uniform, reflecting the fact that very few families survived the Permian extinction. There were also many types of marine reptiles. These included theSauropterygia , which featuredpachypleurosaur s andnothosaur s (both common during the Middle Triassic, especially in the Tethys region),placodont s, and the firstplesiosaur s; the first of the lizardlikeThalattosauria (askeptosaurs); and the highly successfulichthyosaur s, which appeared in Early Triassic seas and soon diversified, some eventually developing to huge size during the late Triassic.On land, the holdover plants included the
lycophyte s, the dominantcycad s,ginkgophyta (represented in modern times by "Ginkgo biloba") and glossopterids. Thespermatophyte s, or seed plants came to dominate the terrestrial flora: in the northern hemisphere,conifer s flourished. "Glossopteris " (aseed fern ) was the dominant southern hemisphere tree during the Early Triassic period.Temnospondyl
amphibian s were among those groups that survived the Permian-Triassic extinction, some lineages (e.g. Trematosaurs) flourishing briefly in the Early Triassic, while others (e.g.capitosaurs ) remained successful throughout the whole period, or only came to prominence in the Late Triassic (e.g.plagiosaur s,metoposaur s). As for other amphibians, the firstLissamphibia are known from the Early Triassic, but the group as a whole did not become common until theJurassic , when the temnospondyls had become very rare.Archosauromorph reptiles — especially
archosaur s — progressively replaced thesynapsid s that had dominated the Permian. Although "Cynognathus " was a characteristic top predator in earlier Triassic (Olenekian andAnisian )Gondwana , and both kannemeyeriiddicynodont s andgomphodont cynodont s remained importantherbivore s during much of the period. By the end of the Triassic, synapsids played only bit parts. During theCarnian (early part of the Late Triassic), some advanced cynodont gave rise to the first mammals. At the same time theOrnithodira , which until then had been small and insignificant, evolved intopterosaur s and a variety ofdinosaur s. TheCrurotarsi were the other important archosaurclade , and during the Late Triassic these also reached the height of their diversity, with various groups including thephytosaur s,aetosaur s, several distinct lineages ofRauisuchia , and the firstcrocodylia ns (theSphenosuchia ). Meanwhile the stocky herbivorousrhynchosaur s and the small to medium-sized insectivorous or piscivorousProlacertiformes were important basal archosauromorph groups throughout most of the Triassic.Among other reptiles, the earliest turtles, like "
Proganochelys " and "Proterochersis ", appeared during theNorian (middle of the Late Triassic). TheLepidosauromorpha —specifically theSphenodontia —are first known in the fossil record a little earlier (during the Carnian). TheProcolophonidae were an important group of small lizard-like herbivores.Archosaurs were initially rarer than the
therapsid s which had dominatedPermian terrestrial ecosystems, but they began to displace therapsids in the mid-Triassic.cite journal|author=Tanner LH, Lucas SG & Chapman MG|title=Assessing the record and causes of Late Triassic extinctions|journal=Earth-Science Reviews | volume=65 | issue=1-2 | pages=103-139 | date=2004 | doi=10.1016/S0012-8252(03)00082-5 | url=http://nmnaturalhistory.org/pdf_files/TJB.pdf | accessdate=2007-10-22 ] This "Triassic Takeover" may have contributed to theevolution of mammals by forcing the surviving therapsids and their mammaliform successors to live as small, mainly nocturnalinsectivore s; nocturnal life probably forced at least the mammaliforms to develop fur and highermetabolic rate s. cite journal | author=Ruben, J.A., and Jones, T.D. | title=Selective Factors Associated with the Origin of Fur and Feathers | journal=American Zoologist | date=2000 | volume=40 | issue=4 | pages=585–596 |doi=10.1093/icb/40.4.585 | url=http://icb.oxfordjournals.org/cgi/content/full/40/4/585]Coal
When the Triassic commenced a coal hiatus (no coal) appeared simultaneously all over the world at the
Permian -Triassic boundary cite journal
author = Retallack, G.J.
coauthors = Veevers, J.J.; Morante, R.
year = 1996
title = Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants
journal = Bulletin of the Geological Society of America
volume = 108
issue = 2
pages = 195–207
url = http://bulletin.geoscienceworld.org/cgi/content/abstract/108/2/195
accessdate = 2008-02-21
doi = 10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2] Probably a sudden large drop in sea level permitted whatever caused the hiatus, and thus accounts for the sudden appearance, for at the close of the Permian there was an even quicker drop in sea level than the slower drop that had occurred in its last half, the sharpest in history [Holser WT Schonlaub H_P,Moses AJr Boekelmann K Klein P Magaritz MOrth CJ Fenninger A Jenny C Kralik M Mauritsch EP Schramm J_M Sattagger K Schmoller R 1989 A unique geochemical record at the Permian/Triassic boundary. Nature 337; 39, on p42] . There had been many salt deposits in Permian basins in the last half [ Knauth LP 1998 Salinity history of the earth's early ocean, Nature 395; 554-555.] . There are large salt basins in the southwest United States and a very large basin is suspected in central Canada, now eroded away [ Dott, R.H. and Batten, R.L. (1971) Evolution of the Earth, 4th ed. McGraw Hill, NY.] . Possibly a tsunami opened up some of these basins, evaporation from which would have previously delayed the sea level decline, and thus account for that quicker drop at the end. This or something like this could account for a subsequent rapid rise when the inland sea created evaporated again after barriers were reestablished. Glaciers can be safely ruled out because there is no evidence of glaciers anywhere during the Triassic. Immediately above the boundary the glossopteris flora was suddenly [ Hosher WT Magaritz M Clark D 1987 Events near the Permian-Triassic boundary. Mod. Geol. 11; 155-180, on p173-174.] largely displaced by an Australia wide coniferous flora containing few species and containing a lycopod herbaceous under story. Conifers became common in Eurasia also. Each of these groups of conifers arose from endemic species because conifers are very poor at crossing ocean barriers and they remained separated for hundreds of millions of years, largely to the present. Podocarpis was south and Pines, Junipers, and Sequoias were north, for instance. The dividing line ran through the Amazon Valley, across the Sahara, and north of Arabia, India, Thailand, and Australia [ Florin R (1963) The distribution of Conifer and Taxad genera in time and space. Acta Horti Bergiani. 20, 121-312.] [ Melville R (1966) Continental drift, Mesozoic continents and the migrations of the angiosperms. Nature 211, 116.] . It has been suggested that there was a climate barrier for the conifers [ Darlington PJ (1965) Biogeography of the southern end of the world. Harvard University Press, Cambridge Mass., on p168.] , although water barriers are more plausible. If so, something that can cross at least short water barriers must have been involved in producing the coal hiatus. Hot climate could have been an important auxiliary factor across Antarctica or the Bering Straights , however. There was a spike of fern and lycopod spores immediately after the close of the Permian [ Retallack GJ (1995) Permian -Triassic life crises on land. Science 267, 77-79.] . In addition there was also a spike of fungal spores immediately after the Permian-Triassic boundary [ Eshet Y Rampino MR (1995) Fungal event and palynological record of ecological crises and recovery across Permian-Triassic boundary. Geology 23, 967-970, on p969.] . This spike may have lasted 50,000 years in Italy and 200,000 years in China and must have contributed to the climate warmth. If so, something besides an instant catastrophe must have been involved to cause the coal hiatus because fungi would surely have removed all dead vegetation and coal forming detritus in a few decades in most tropical places. Besides, the fungal spores rose gradually and declined similarly. There was also much woody debris. Each phenomenon would hint at widespread vegetative death. Whatever caused the coal hiatus must have started in North America 25 million years sooner [ Retallack GJ Veevers JJ Morante R (1996) Global coal gap between Permian-Triassic extinctions and middle Triassic recovery of peat forming plants (review). Geological Society Am. Bull. 108, 195-207.] . Weesner believes thatMastotermitidae termites may go back to the Permian [ Weesner FM (1960) Evolution biology of termites. Annual Review of Entomology. 5; 153-170.] and fossil wings have been discovered in the Permian of Kansas which have a close resemblance to wings of Mastotermes of the [http://tolweb.org/tree?group=Mastotermitidae Mastotermitidae] , which is the most primitive living termite and which is thought to be the descendant of Cryptocercus genus, the wood roach. This fossil is called Pycnoblattina. It folded its wings in a convex pattern between segments 1a and 2a. Mastotermes is the only living insect that does the same [ Tilyard RJ (1937) Kansas Permian insects.. Part XX the cockroaches, or order BlattariaI, II Am. Journal of Science 34; 169-202, 249-276.] , so it is possible that they are responsible for the coal hiatus. This is plausible because termites attack the trunk, which is the most vulnerable part. Modern termites also eat detritus. Ifparasitoids were what brought back the coal after about 10 million years past the opening, their initial evolution must have taken place in or near Australia because the coal reappeared there first by several million years [Retallack GJ Veevers JJ Morante R (1996) Global coal gap between Permian-Triassic extinctions and middle Triassic recovery of peat forming plants (review). Geological Society Am. Bull. 108, 195-207, on p196.] . Ancestors of theEvaniidae , which parasitize roach egg sacs [ Godfrey HCJ (1994) Parasitoid's Behavioral and Evolutionary Ecology. Princeton University Press, Princeton.] , could have been the ones involved, and this may explain why termites evolved separated eggs except in Mastotermitidae. During the Triassic coal hiatus in the beginning of the Triassic it was possible to find stump impressions up to 45 cm (17.7 in) and root impressions up to 18 cm (7 in) in south Australia, but no roots or logs. The soil was extremely low in organic matter and there was no detritus at all [ Retallack G (1997) Paleosols in the upper Narrabeen group of New South Wales as evidence of early Triassic paleoenvironments without exact modern analogs (review) Australian Journal of Earth Sciences 44; 185-281.] .Lagerstätten
The
Monte San Giorgio lagerstätte, now in theLake Lugano region of northernItaly andSwitzerland , was in Triassic times alagoon behind reefs with an anoxic bottom layer, so there were no scavengers and little turbulence to disturb fossilization, a situation that can be compared to the better-known JurassicSolnhofen limestone lagerstätte. The remains of fish and various marine reptiles (including the commonpachypleurosaur "Neusticosaurus ", and the bizarre long-neckedarchosauromorph "Tanystropheus "), along with some terrestrial forms like "Ticinosuchus " and "Macrocnemus ", have been recovered from this locality. All these fossils date from theAnisian /Ladinian transition (about 237 million years ago).Late Triassic extinction event
The Triassic period ended with a mass extinction, which was particularly severe in the oceans; the
conodonts disappeared, and all the marine reptiles except ichthyosaurs and plesiosaurs. Invertebrates likebrachiopod s,gastropod s, andmollusc s were severely affected. In the oceans, 22% of marine families and possibly about half of marine genera went missing according toUniversity of Chicago paleontologistJack Sepkoski .Though the end-Triassic extinction event was not equally devastating everywhere in terrestrial ecosystems, several important clades of crurotarsans (large archosaurian reptiles previously grouped together as the
thecodont s) disappeared, as did most of the large labyrinthodont amphibians, groups of small reptiles, and some synapsids (except for the proto-mammals). Some of the early, primitive dinosaurs also went extinct, but other more adaptive dinosaurs survived to evolve in the Jurassic. Surviving plants that went on to dominate the Mesozoic world included modern conifers and cycadeoids.What caused this Late Triassic extinction is not known with certainty. It was accompanied by huge volcanic eruptions that occurred as the supercontinent Pangaea began to break apart about 202 to 191 million years ago [(40Ar/39Ar dates [Nomade et al.,2007 Palaeogeography, Palaeoclimatology, Palaeoecology 244, 326-344.] )] , forming the
Central Atlantic Magmatic Province [(CAMP)] [Marzoli et al., 1999, Science 284. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province, pp. 618-620.] , one of the largest known inland volcanic events since the planet cooled and stabilized. Other possible but less likely causes for the extinction events include global cooling or even abolide impact, for which an impact crater containingManicouagan Reservoir inQuebec ,Canada , has been singled out. At the Manicouagan impact crater, however, recent research has shown that the impact melt within the crater has an age of 214±1 Ma. The date of the Triassic-Jurassic boundary has also been more accurately fixed recently, at 201.58±0.28 Ma. Both dates are gaining accuracy by using more accurate forms of radiometric dating, in particular the decay of uranium to lead in zircons formed at the impact. So the evidence suggests the Manicouagan impact preceded the end of the Triassic by approximately 10±2 Ma. Therefore it could not be the immediate cause of the observed mass extinction. [Hodych & Dunning, 1992.]The number of Late Triassic extinctions is disputed. Some studies suggest that there are at least two periods of extinction towards the end of the Triassic, between 12 and 17 million years apart. But arguing against this is a recent study of North American faunas. In the Petrified Forest of northeast Arizona there is a unique sequence of latest Carnian-early Norian terrestrial sediments. An [http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_42936.htm analysis in 2002] found no significant change in the paleoenvironment. [ [http://gsa.confex.com/gsa/2002AM/finalprogram/abstract_42936.htm No Significant Nonmarine Carnian-Norian (Late Triassic) Extinction Event: Evidence From Petrified Forest National Park ] ]
Phytosaur s, the most common fossils there, experienced a change-over only at the genus level, and the number of species remained the same. Someaetosaur s, the next most common tetrapods, and early dinosaurs, passed through unchanged. However, both phytosaurs and aetosaurs were among the groups of archosaur reptiles completely wiped out by the end-Triassic extinction event.It seems likely then that there was some sort of end-Carnian extinction, when several herbivorous archosauromorph groups died out, while the large herbivorous
therapsid s— the kannemeyeriid dicynodonts and the traversodont cynodonts— were much reduced in the northern half of Pangaea (Laurasia ).These extinctions within the Triassic and at its end allowed the dinosaurs to expand into many niches that had become unoccupied. Dinosaurs became increasingly dominant, abundant and diverse, and remained that way for the next 150 million years. The true "Age of Dinosaurs" is the Jurassic and Cretaceous, rather than the Triassic.
ee also
*
Geologic timescale
*List of fossil sites "(with link directory)"
*Paleorrota "(Triassic place inBrazil ")Notes
References
*Emiliani, Cesare. (1992). "Planet Earth : Cosmology, Geology, & the Evolution of Life & the Environment". Cambridge University Press. (Paperback Edition ISBN 0-521-40949-7)
* Ogg, Jim; June, 2004, "Overview of Global Boundary Stratotype Sections and Points (GSSP's)" [http://www.stratigraphy.org/gssp.htm] Accessed April 30, 2006
*Stanley, Steven M. "Earth System History." New York: W.H. Freeman and Company, 1999. ISBN 0-7167-2882-6
*van Andel, Tjeerd, (1985) 1994, "New Views on an Old Planet : A History of Global Change", Cambridge University PressExternal links
* [http://www.palaeos.com/Mesozoic/Triassic/Triassic.htm Overall introduction]
* [http://rainbow.ldgo.columbia.edu/courses/v1001/9.html 'The Triassic world']
* [http://gallery.in-tch.com/~earthhistory/triassic%20page%201.html Douglas Henderson's illustrations of Triassic animals]
* [http://palaeo.gly.bris.ac.uk/Palaeofiles/Triassic/triextict.htm Paleofiles page on the Triassic extinctions]
* [http://www.geo-lieven.com/erdzeitalter/trias/trias.htm Examples of Triassic Fossils]
Wikimedia Foundation. 2010.