mir-16 microRNA precursor family

mir-16 microRNA precursor family
mir-16
RF00254.jpg
miR-16 microRNA secondary structure and sequence conservation.
Identifiers
Symbol mir-16
Rfam RF00254
miRBase family MIPF0000006
HUGO 31545
OMIM 609704
Other data
RNA type microRNA
Domain(s) Eukaryota;

The miR-16 microRNA precursor family is a group of related small non-coding RNA genes that regulates gene expression. miR-16, miR-15, mir-195 and miR-457 are related microRNA precursor sequences from the mir-15 gene family ([1]). This microRNA family appears to be vertebrate specific and its members have been predicted or experimentally validated in a wide range of vertebrate species (MIPF0000006).

Contents

Background

The human miR-16 precursor was discovered through detailed expression profile and Karyotype analyses of patients by Calin and colleagues.[1] Karyotyping of chromosome structures from individuals with B-cell chronic lymphocytic leukaemias (B-CLL) found that more than half have alterations in th 13q14 region.[1][2] Deletions of this well characterised 1 megabase region of the genome[3][4] was also observed in approximately 50% of mantle cell lymphoma,   up to 40% of multiple myeloma,   and 60% of prostate cancers.[5] Comprehensive screenings of the region at the time did not provide consistent evidence of involvement from any of the known genes at the time.[3][4][6][7][8][9][10] Using CD5+ B-lymphocytes,[11] which is known to accumulate with B-CLL progression, the minimal region lost from 13q14 region was scrutinised for regulatory elements.[1] Publicly available sequence databases were used to identify a gene cluster which encodes the homologue to the human miR15 and miR16 from the Caenorhabditis elegans.[12][13][14]

Gene targets

In the original publication which identified the action of miR15 and miR16 in the development of B-CLL, Calin and colleagues proposed that miR16 could be the targets with imperfect base pairing for 14 genes.[1] Increased CD5+ B-lymphocytes in CLL suggests the miR16 may be involved in cellular differentiation.[1] In animal models single-stranded microRNA species act by binding to imperfect mRNA complements, typically to the 3' UTR,[15][16] although targets have also been observed in the coding sequence of the mRNA.[15][17] Downregulation of miR16 (as well as miR15) was observed in diffuse large B-cell lymphoma.[18] miR16 has been shown to bind to a nine base pair to a complementary sequence in the 3' UTR region of BCL2, which is an anti-apoptotic gene involved in an evolutionarily conserved pathway in programmed cell death.[19]

Clinical relevance

Altered expression of microRNA has been observed in cancer, [20][21][22] including malignancies of the breast, colon,[23][24]brain,[25][26] lung,[27]lymphatic system,[1][18][28][29]ovaries,[30]pancreas,[31] prostate,[32] and stomach.[33] This difference in expression levels can be used distinguish between cancerous and healthy tissues and to determine clinical prognosis.[24][34][35] The fact that pathology is associated with a different expression profile has led to the proposal that disease specific biomarkers can provide potential targets for directed clinical intervention.[36] More recently, there is evidence that in colorectal cancer that the efficacy of treatment with the monoclonal antibody cetuximab can be assessed by the expression pattern of colorectal carcinoma after therapy.[37]

miR-16 and miR-15a are clustered within a 0.5 kbp region in Chromosome 13 (13q14) in humans, a chromosomal region shown to be deleted or down-regulated in approximately more than half of B-CLL,[1] the most prevalent form of leukemia in adults.[38]Carcinogenesis is a gradual process, involving multiple genetic mutations, thus every patient with malignancy presents with a heterogeneous population of cells. The fact that mir-16 microRNA loss is observed in a large proportion of cells indicates the change occurred early in cancer development[21] and a target for therapeutic intervention.

References

  1. ^ a b c d e f g Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. (2002). "Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.". Proc Natl Acad Sci USA 99 (24): 15524–15529. doi:10.1073/pnas.242606799. PMC 137750. PMID 12434020. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=137750. 
  2. ^ Coll-Mulet L, Gil J. (2009). "Genetic alterations in chronic lymphocytic leukaemia.". Clin Transl Oncol 11 (4): 194– 198. doi:10.1007/s12094-009-0340-z. PMID 19380295. 
  3. ^ a b Bullrich F, Fujii H, Calin G, Mabuchi H, Negrini M, Pekarsky Y, Rassenti L, Alder H, Reed JC, Keating MJ, Kipps TJ, Croce C, M. (2001). "Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene.". Cancer Res 61 (18): 6640– 6648. PMID 11559527. http://cancerres.aacrjournals.org/content/61/18/6640.full. 
  4. ^ a b Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E, Guccione E, Qu X, Chien M, Murty VV, Gaidano G, Inghirami G, Zhang P, Fischer S, Kalachikov SM, Russo J, Edelman I, Efstratiadis A, Dalla-Favera R. (2001). "Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia.". Blood 97 (7): 2098– 2104. doi:10.1182/blood.V97.7.2098. PMID 11264177. http://bloodjournal.hematologylibrary.org/cgi/content/full/97/7/2098. 
  5. ^ Dong JT, Boyd JC, Frierson HF Jr. (2001). "Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer.". Prostate 49 (3): 166– 171. doi:10.1002/pros.1131+[pii]. PMID 11746261. 
  6. ^ Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grander D, Iyengar A, Baranova A, Kashuba V, Merup M, Wu XS, Gardiner A, Mullenbach R, Poltaraus A, Hultstrom AL, Juliusson G, Chapman R, Tiller M, Cotter F, Gahrton G, Yankovsky N, Zabarovsky E, Einhorn S, Oscier D. (1997). "Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia.". Oncogene 15 (20): 2463– 2473. doi:10.1038/sj.onc.1201643. PMID 9395242. 
  7. ^ Mabuchi H, Fujii H, Calin G, Alder H, Negrini M, Rassenti L, Kipps TJ, Bullrich F, Croce CM. (2001). "Cloning and characterization of CLLD6, CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia.". Cancer Res 61 (7): 2870– 2877. PMID 11306461. http://cancerres.aacrjournals.org/content/61/7/2870.full. 
  8. ^ Rondeau G, Moreau I, Bézieau S, Petit JL, Heilig R, Fernandez S, Pennarun E, Myers JS, Batzer MA, Moisan JP, Devilder MC. (2001). "Comprehensive analysis of a large genomic sequence at the putative B-cell chronic lymphocytic leukaemia (B-CLL) tumour suppresser gene locus.". Mutat Res 458 (3–4): 55–70. doi:10.1016/S0027-5107(01)00219-6. PMID 11691637. 
  9. ^ Wolf S, Mertens D, Schaffner C, Korz C, Dohner H, Stilgenbauer S, Lichter P. (2001). "B-cell neoplasia associated gene with multiple splicing (BCMS): the candidate B-CLL gene on 13q14 comprises more than 560 kb covering all critical regions". Hum Mol Genet 10 (12): 1275– 1285. doi:10.1093/hmg/10.12.1275. PMID 11406609. http://hmg.oxfordjournals.org/content/10/12/1275.full. 
  10. ^ Rowntree C, Duke V, Panayiotidis P, Kotsi P, Palmisano GL, Hoffbrand AV, Foroni L. (2002). "Deletion analysis of chromosome 13q14.3 and characterisation of an alternative splice form of LEU1 in B cell chronic lymphocytic leukemia". Leukemia 16 (17): 1267– 1275. doi:10.1038/sj.leu.2402551. PMID 12094250. http://www.nature.com/leu/journal/v16/n7/full/2402551a.html. 
  11. ^ Caligaris-Cappio F, Hamblin TJ. (1999). "B-cell chronic lymphocytic leukemia: a bird of a different feather". J Clin Oncol 17 (1): 399– 408. PMID 10458259. 
  12. ^ Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. (2001). "Identification of novel genes coding for small expressed RNAs". Science 294 (5543): 853– 858. doi:10.1126/science.1064921. PMID 11679670. 
  13. ^ Lau NC, Lim LP, Weinstein EG, Bartel DP. (2001). "An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans". Science 294 (5543): 858– 862. doi:10.1126/science.1065062. PMID 11679671. 
  14. ^ Lee RC, Ambros V. (2001). "An extensive class of small RNAs in Caenorhabditis elegans". Science 294 (5543): 862– 864. doi:10.1126/science.1065329. PMID 11679672. 
  15. ^ a b Lewis BP, Burge CB, Bartel DP. (2005). "Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets". Cell 120 (1): 15– 20. doi:10.1016/j.cell.2004.12.035. PMID 15652477. 
  16. ^ Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M. (2005). "Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals". Nature 434 (7031): 338– 345. doi:10.1038/nature03441. PMC 2923337. PMID 15735639. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2923337. 
  17. ^ Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. (2008). "MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation". Nature 455 (7216): 1124– 1128. doi:10.1038/nature07299. PMC 2577422. PMID 18806776. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2577422. 
  18. ^ a b Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE. (2004). "Accumulation of miR-155 and BIC RNA in human B-cell lymphoma". Proc Natl Acad Sci U S A 102 (10): 3627–3632. doi:10.1073/pnas.0500613102. PMC 552785. PMID 15738415. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=552785. 
  19. ^ Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. (2005). "miR-15 and miR-16 induce apoptosis by targeting BCL2". Proc Natl Acad Sci U S A 102 (39): 13944– 13949. doi:10.1073/pnas.0506654102. PMC 1236577. PMID 16166262. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1236577. 
  20. ^ Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. (2005). "MicroRNA expression profiles classify human cancers". Nature 435 (7043): 834–838. doi:10.1038/nature03702. PMID 15944708. http://www.nature.com/nature/journal/v435/n7043/full/nature03702.html. 
  21. ^ a b Croce CM. (2009). "Causes and consequences of microRNA dysregulation in cancer". Nat Rev Genet 10 (10): 704–714. doi:10.1038/nrg2634. PMID 19763153. 
  22. ^ Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. (2004). "Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers". Proc Natl Acad Sci U S A 101 (9): 2999– 3004. doi:10.1073/pnas.0307323101. PMC 365734. PMID 14973191. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=365734. 
  23. ^ Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. (2003). "Reduced accumulation of specific microRNAs in colorectal neoplasia". Mol Cancer Res 1 (12): 882–891. PMID 14573789. http://mcr.aacrjournals.org/content/1/12/882.long. 
  24. ^ a b Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC. (2008). "MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma". JAMA 299 (4): 425– 436. doi:10.1001/jama.299.4.425. PMC 2614237. PMID 18230780. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2614237. 
  25. ^ Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG. (2005). "Extensive modulation of a set of microRNAs in primary glioblastoma". Biochem Biophys Res Commun 334 (4): 1351– 1358. doi:10.1016/j.bbrc.2005.07.030. PMID 16039986. 
  26. ^ Chan JA, Krichevsky AM, Kosik KS. (2007). "MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells". Cancer Res 65 (14): 6029– 6033. doi:10.1158/0008-5472.CAN-05-0137. PMID 16024602. http://cancerres.aacrjournals.org/content/65/14/6029.full. 
  27. ^ Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. (2004). "Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival". Cancer Res 64 (11): 3753–3756. doi:10.1158/0008-5472.CAN-04-0637. PMID 15172979. http://cancerres.aacrjournals.org/content/64/11/3753.long. 
  28. ^ Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. (2004). "High expression of precursor microRNA-155/BIC RNA in children with Burkitt's lymphoma". Genes Chromosomes Cancer 39 (2): 167–169. doi:10.1002/gcc.10316. PMID 14695998. 
  29. ^ Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M. (2004). "Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant Lymphoma". Cancer Res 64 (9): 3087– 3095. doi:10.1158/0008-5472.CAN-03-3773. PMID 15126345. http://cancerres.aacrjournals.org/content/64/9/3087.long. 
  30. ^ Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM. (2007). "MicroRNA signatures in human ovarian cancer". Cancer Res 67 (8): 8699– 8707. doi:10.1158/0008-5472.CAN-07-1936. PMID 17875710. http://cancerres.aacrjournals.org/content/67/18/8699.long. 
  31. ^ Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM. (2007). "MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis". JAMA 297 (17): 1901– 1908. doi:10.1001/jama.297.17.1901. PMID 17473300. http://jama.ama-assn.org/cgi/content/full/297/17/1901. 
  32. ^ Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D'Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R. (2008). "The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities". Nat Med 14 (11): 1271– 1277. doi:10.1038/nm.1880. PMID 18931683. 
  33. ^ Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, Cavazzini L, Volinia S, Alder H, Ruco LP, Baldassarre G, Croce CM, Vecchione A. (2008). "MicroRNA signatures in human ovarian cancer". Cancer Cell 13 (3): 272– 286. doi:10.1016/j.ccr.2008.02.013. PMID 18328430. 
  34. ^ Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. (2006). "Unique microRNA molecular profiles in lung cancer diagnosis and prognosis". Cancer Cell 9 (3): 189– 198. doi:10.1016/j.ccr.2006.01.025. PMID 16530703. 
  35. ^ Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. (2005). "A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia". N Engl J Med 353 (17): 1793– 1801. doi:10.1056/NEJMoa050995. PMID 16251535. 
  36. ^ Cho WC. (2010). "A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia". Expert Opin Ther Targets 14 (10): 1005– 1008. doi:10.1517/14728222.2010.522399. PMID 20854177. 
  37. ^ Ragusa M, Majorana A, Statello L, Maugeri M, Salito L, Barbagallo D, Guglielmino MR, Duro LR, Angelica R, Caltabiano R, Biondi A, Di Vita M, Privitera G, Scalia M, Cappellani A, Vasquez E, Lanzafame S, Basile F, Di Pietro C, Purrello M. (2010). "Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment". Mol Cancer Ther 14 (10): 1005– 1008. doi:10.1158/1535-7163.MCT-10-0137. PMID 20881268. http://mct.aacrjournals.org/content/early/2010/09/22/1535-7163.MCT-10-0137. 
  38. ^ Döhner H, Stilgenbauer S. Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P. (2000). "Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia". N Engl J Med 343 (26): 1910–1916. doi:10.1056/NEJM200012283432602. PMID 11136261. 

Further reading

  1. ^ Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O (2010). "miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants". Science 329 (5998): 1537–41. doi:10.1126/science.1193692. PMID 20847275. 
  2. ^ Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H, Lu X (2010). "Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway". Cancer Res 70 (18): 7176–86. doi:10.1158/0008-5472.CAN-10-0697. PMC 2940956. PMID 20668064. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2940956. 
  3. ^ Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ (2010). "Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21 and miR-146a in the placenta". Epigenetics 5 (7): 583–9. doi:10.4161/epi.5.7.12762. PMC 2974801. PMID 20647767. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2974801. 
  4. ^ Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, Tavakkolizadeh A (2010). "MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts". Exp Cell Res 316 (20): 3512–21. doi:10.1016/j.yexcr.2010.07.007. PMC 2976799. PMID 20633552. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2976799. 
  5. ^ Xu F, Zhang X, Lei Y, Liu X, Liu Z, Tong T, Wang W (2010). "Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma". J Cell Biochem 111 (3): 727–34. doi:10.1002/jcb.22762. PMID 20626035. 
  6. ^ Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, Qiang B, Yuan J, Peng X (2010). "MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer's-associated pathogenesis in SAMP8 mice". Neurobiol Aging. doi:10.1016/j.neurobiolaging.2010.04.034. PMID 20619502. 
  7. ^ Yang J, Cao Y, Sun J, Zhang Y (2009). "Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells". Med Oncol 27 (4): 1114–8. doi:10.1007/s12032-009-9344-3. PMID 19908170. 
  8. ^ Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S, Calin GA, Mukherjee P (2009). "MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer". Cancer Res 69 (23): 9090–5. doi:10.1158/0008-5472.CAN-09-2552. PMC 2859686. PMID 19903841. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2859686. 
  9. ^ Guo CJ, Pan Q, Jiang B, Chen GY, Li DG (2009). "Effects of upregulated expression of microRNA-16 on biological properties of culture-activated hepatic stellate cells". Apoptosis 14 (11): 1331–40. doi:10.1007/s10495-009-0401-3. PMID 19784778. 
  10. ^ Hanlon K, Rudin CE, Harries LW (2009). Williams, Simon. ed. "Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL)". PLoS One 4 (9): e7169. doi:10.1371/journal.pone.0007169. PMC 2745703. PMID 19779621. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2745703. 
  11. ^ Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T (2010). "Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes". Mol Ther 18 (1): 181–7. doi:10.1038/mt.2009.207. PMC 2839211. PMID 19738602. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2839211. 
  12. ^ Lerner M, Harada M, Lovén J, Castro J, Davis Z, Oscier D, Henriksson M, Sangfelt O, Grandér D, Corcoran MM (2009). "DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1". Exp Cell Res 315 (17): 2941–52. doi:10.1016/j.yexcr.2009.07.001. PMID 19591824. 
  13. ^ Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E (2009). "miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer". Cancer Res 69 (13): 5553–9. doi:10.1158/0008-5472.CAN-08-4277. PMID 19549910. 
  14. ^ Aqeilan RI, Calin GA, Croce CM (2010). "miR-15a and miR-16-1 in cancer: discovery, function and future perspectives". Cell Death Differ 17 (2): 215–20. doi:10.1038/cdd.2009.69. PMID 19498445. 
  15. ^ Tsang WP, Kwok TT (2010). "Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells". J Nutr Biochem 21 (2): 140–6. doi:10.1016/j.jnutbio.2008.12.003. PMID 19269153. 
  16. ^ Kaddar T, Rouault JP, Chien WW, Chebel A, Gadoux M, Salles G, Ffrench M, Magaud JP (2009). "Two new miR-16 targets: caprin-1 and HMGA1, proteins implicated in cell proliferation". Biol Cell 101 (9): 511–24. doi:10.1042/BC20080213. PMID 19250063. 
  17. ^ Guo CJ, Pan Q, Li DG, Sun H, Liu BW (2009). "miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis". J Hepatol 50 (4): 766–78. doi:10.1016/j.jhep.2008.11.025. PMID 19232449. 
  18. ^ Kaddar T, Chien WW, Bertrand Y, Pages MP, Rouault JP, Salles G, Ffrench M, Magaud JP (2009). "Prognostic value of miR-16 expression in childhood acute lymphoblastic leukemia relationships to normal and malignant lymphocyte proliferation". Leuk Res 33 (9): 1217–23. doi:10.1016/j.leukres.2008.12.015. PMID 19195700. 
  19. ^ Karaa ZS, Iacovoni JS, Bastide A, Lacazette E, Touriol C, Prats H (2009). "The VEGF IRESes are differentially susceptible to translation inhibition by miR-16". RNA 15 (2): 249–54. doi:10.1261/rna.1301109. PMC 2648711. PMID 19144909. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2648711. 
  20. ^ Shanmugam N, Reddy MA, Natarajan R (2008). "Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products". J Biol Chem 283 (52): 36221–33. doi:10.1074/jbc.M806322200. PMC 2606002. PMID 18854308. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2606002. 
  21. ^ Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008). "miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes". Nucleic Acids Res 36 (16): 5391–404. doi:10.1093/nar/gkn522. PMC 2532718. PMID 18701644. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2532718. 
  22. ^ Chen RW, Bemis LT, Amato CM, Myint H, Tran H, Birks DK, Eckhardt SG, Robinson WA (2008). "Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma". Blood 112 (3): 822–9. doi:10.1182/blood-2008-03-142182. PMC 2481543. PMID 18483394. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2481543. 
  23. ^ Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D (2008). "miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells". Int J Cancer 123 (2): 372–9. doi:10.1002/ijc.23501. PMID 18449891. 
  24. ^ Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M, Croce CM (2008). "MiR-15a and miR-16-1 cluster functions in human leukemia". Proc Natl Acad Sci U S A 105 (13): 5166–71. doi:10.1073/pnas.0800121105. PMC 2278188. PMID 18362358. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2278188. 
  25. ^ Scaglione BJ, Salerno E, Balan M, Coffman F, Landgraf P, Abbasi F, Kotenko S, Marti GE, Raveche ES (2007). "Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model". Br J Haematol 139 (5): 645–57. doi:10.1111/j.1365-2141.2007.06851.x. PMC 2692662. PMID 17941951. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2692662. 
  26. ^ Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC, Fredrickson T, Landgraf P, Ramachandra S, Huppi K, Toro JR, Zenger VE, Metcalf RA, Marti GE (2007). "Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice". Blood 109 (12): 5079–86. doi:10.1182/blood-2007-02-071225. PMC 1890829. PMID 17351108. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1890829. 
  27. ^ Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H, Chau N, Cleary M, Jackson AL, Carleton M, Lim L (2007). "Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression". Mol Cell Biol 27 (6): 2240–52. doi:10.1128/MCB.02005-06. PMC 1820501. PMID 17242205. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1820501. 
  28. ^ Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC (2005). "miR-15a and miR-16-1 down-regulation in pituitary adenomas". J Cell Physiol 204 (1): 280–5. doi:10.1002/jcp.20282. PMID 15648093. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”