- Carbon tetrachloride
-
Carbon tetrachloride TetrachloromethaneOther namesTetrachloromethane, Benziform, Benzinoform, Carbon chloride, Carbon tet, Freon 10, Halon 104, Methane tetrachloride, Perchloromethane, Tetraform, TetrasolIdentifiers CAS number 56-23-5 PubChem 5943 ChemSpider 5730 UNII CL2T97X0V0 EC number 200-262-8 UN number 1846 KEGG C07561 ChEBI CHEBI:27385 ChEMBL CHEMBL44814 RTECS number FG4900000 Jmol-3D images Image 1 - ClC(Cl)(Cl)Cl
Properties Molecular formula CCl4 Molar mass 153.82 g mol−1 Appearance colourless liquid
ether-like odorDensity 1.5867 g cm−3 (liquid)
1.831 g cm−3 at −186 °C (solid)
1.809 g cm−3 at −80 °C (solid)Melting point -22.92 °C, 250 K, -9 °F
Boiling point 76.72 °C, 350 K, 170 °F
Solubility in water 785–800 mg/L at 25 °C Solubility soluble in alcohol, ether, chloroform, benzene log P 2.64 Vapor pressure 11.94 kPa at 20 °C Refractive index (nD) 1.4601 Structure Crystal structure Monoclinic Molecular shape Tetrahedral Hazards MSDS External MSDS EU Index 602-008-00-5 EU classification Carc. Cat. 3
Toxic (T)
Dangerous for the environment (N)R-phrases R23/24/25, R40, R48/23, R59, R52/53 S-phrases (S1/2), S23, S36/37, S45, S59, S61 NFPA 704 Flash point Not flammable Autoignition
temperature982 °C LD50 2350 mg/kg Related compounds Other cations Silicon tetrachloride
Germanium tetrachloride
Tin tetrachloride
Lead tetrachlorideRelated chloromethanes Chloromethane
Dichloromethane
ChloroformRelated compounds Tetrafluoromethane
Tetrabromomethane
TetraiodomethaneSupplementary data page Structure and
propertiesn, εr, etc. Thermodynamic
dataPhase behaviour
Solid, liquid, gasSpectral data UV, IR, NMR, MS tetrachloride (verify) (what is: / ?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)Infobox references Carbon tetrachloride, also known by many other names (the most notable being carbon tet in the cleaning industry, and a Halon or Freon in HVAC; see Table for others) is the organic compound with the formula CCl4. It was formerly widely used in fire extinguishers, as a precursor to refrigerants, and as a cleaning agent. It is a colourless liquid with a "sweet" smell that can be detected at low levels.
Both carbon tetrachloride and tetrachloromethane are acceptable names under IUPAC nomenclature.
Contents
History and synthesis
The production of carbon tetrachloride has steeply declined since the 1980s due to environmental concerns and the decreased demand for CFCs, which were derived from carbon tetrachloride. In 1992, production in the U.S.-Europe-Japan was estimated at 720,000 tonnes.[1]
Carbon tetrachloride was originally synthesised by the French chemist Henri Victor Regnault in 1839 by the reaction of chloroform with chlorine,[2] but now it is mainly produced from methane:
- CH4 + 4 Cl2 → CCl4 + 4 HCl
The production often utilizes by-products of other chlorination reactions, such as from the syntheses of dichloromethane and chloroform. Higher chlorocarbons are also subjected to "chlorinolysis:"
- C2Cl6 + Cl2 → 2 CCl4
Prior to the 1950s, carbon tetrachloride was manufactured by the chlorination of carbon disulfide at 105 to 130 °C:[1]
Properties
In the carbon tetrachloride molecule, four chlorine atoms are positioned symmetrically as corners in a tetrahedral configuration joined to a central carbon atom by single covalent bonds. Because of this symmetrical geometry, CCl4 is non-polar. Methane gas has the same structure, making carbon tetrachloride a halomethane. As a solvent, it is well suited to dissolving other non-polar compounds, fats, and oils. It can also dissolve iodine. It is somewhat volatile, giving off vapors with a smell characteristic of other chlorinated solvents, somewhat similar to the tetrachloroethylene smell reminiscent of dry cleaners' shops.
Solid tetrachloromethane has 2 polymorphs: crystalline II below −47.5 °C (225.6 K) and crystalline I above −47.5 °C.[3]
At −47.3 °C it has monoclinic crystal structure with space group C2/c and lattice constants a = 20.3, b = 11.6, c = 19.9 (.10−1 nm), β = 111°.[4] With a specific gravity greater than 1, carbon tetrachloride will be present as a dense nonaqueous phase liquid if sufficient quantities are spilled in the environment.
Uses
In the 20th century, carbon tetrachloride was widely used as a dry cleaning solvent, as a refrigerant, and in lava lamps.[5]
In 1910, The Pyrene Manufacturing Company of Delaware filed a patent for a using carbon tetrachloride to extinguish fires.[6] The liquid vaporized and extinguished the flames by inhibiting the chemical chain reaction of the combustion process (it was an early 20th-century presupposition that the fire suppression ability of carbon tetrachloride relied on oxygen removal.) In 1911, they patented a small, portable extinguisher that used the chemical.[7] This consisted of a brass bottle with an integrated handpump that was used to expel a jet of liquid toward the fire. As the container was unpressurized, it could be easily refilled after use.[8] Carbon tetrachloride was suitable for liquid and electrical fires and the extinguisers were often fitted to motor vehicles.
One specialty use of carbon tetrachloride was in Stamp collecting, to reveal Watermarks on postage stamps without damaging them. A small amount of the liquid was placed on the back of a stamp, sitting in a black glass or obsidian tray. The letters or design of the watermark could then be clearly seen.
However, once it became apparent that carbon tetrachloride exposure had severe adverse health effects, safer alternatives such as tetrachloroethylene were found for these applications, and its use in these roles declined from about 1940 onward. The fact that high temperatures cause it to react to produce phosgene made it especially hazardous when used against fires. This reaction also caused a rapid depletion of oxygen. Carbon tetrachloride persisted as a pesticide to kill insects in stored grain, but, in 1970, it was banned in consumer products in the United States.
Prior to the Montreal Protocol, large quantities of carbon tetrachloride were used to produce the freon refrigerants R-11 (trichlorofluoromethane) and R-12 (dichlorodifluoromethane). However, these refrigerants are now believed to play a role in ozone depletion and have been phased out. Carbon tetrachloride is still used to manufacture less destructive refrigerants. Carbon tetrachloride has also been used in the detection of neutrinos.
Carbon tetrachloride is one of the most potent hepatotoxins (toxic to the liver), and is widely used in scientific research to evaluate hepatoprotective agents.[9][10]
Reactivity
Carbon tetrachloride has practically no flammability at lower temperatures. Under high temperatures in air, it forms poisonous phosgene.
Because it has no C-H bonds, carbon tetrachloride does not easily undergo free-radical reactions. Hence, it is a useful solvent for halogenations either by the elemental halogen or by a halogenation reagent such as N-bromosuccinimide (these conditions are known as Wohl-Ziegler Bromination).
In organic chemistry, carbon tetrachloride serves as a source of chlorine in the Appel reaction.
Solvent
It is used as a solvent in synthetic chemistry research, but, because of its adverse health effects, it is no longer commonly used, and in general chemists try to replace it with other solvents.[9] It is sometimes useful as a solvent for infrared spectroscopy, because there are no significant absorption bands > 1600 cm−1. Because carbon tetrachloride does not have any hydrogen atoms, it was historically used in proton NMR spectroscopy. However, carbon tetrachloride is toxic, and its dissolving power is low.[11] Its use has been largely superseded by deuterated solvents. Use of carbon tetrachloride in determination of oil has been replaced by various other solvents, such as tetrachloroethylene.[9]
Safety
Exposure to high concentrations of carbon tetrachloride (including vapor) can affect the central nervous system, degenerate the liver[10] and kidneys[12] and may result (after prolonged exposure) in coma and even death.[13] Chronic exposure to carbon tetrachloride can cause liver[14][15] and kidney damage and could result in cancer.[16] More information can be found in Material safety data sheets.[17]
In 2008, a study of common cleaning products found the presence of carbon tetrachloride in "very high concentrations" (up to 101 mg m−3) as a result of manufacturers' mixing of surfactants or soap with sodium hypochlorite (bleach).[18]
Like many other volatile substances, carbon tetrachloride is prone to misuse by inhalation, due to its possible depressant and/or dissociative effect upon the central nervous system. Use of carbon tetrachloride in this manner presents serious health risks, and may result in toxic effects described above.
Carbon tetrachloride is also both ozone-depleting[19] and a greenhouse gas.[20] However, since 1992[21] its atmospheric concentrations have been in decline for the reasons described above (see also the atmospheric time-series figure). CCl4 has an atmospheric lifetime of 85 years.[22]
References
- ^ a b Manfred Rossberg, Wilhelm Lendle, Gerhard Pfleiderer, Adolf Tögel, Eberhard-Ludwig Dreher, Ernst Langer, Heinz Jaerts, Peter Kleinschmidt, Heinz Strack, Richard Cook, Uwe Beck, Karl-August Lipper, Theodore R. Torkelson, Eckhard Löser, Klaus K. Beutel, “Chlorinated Hydrocarbons” in Ullmann's Encyclopedia of Industrial Chemistry, 2006 Wiley-VCH, Weinheim.doi:10.1002/14356007.a06_233.pub2
- ^ V. Regnault (1839). "Ueber die Chlorverbindungen des Kohlenstoffs, C2Cl2 und CCl2". Annalen der Pharmacie 30 (3): 350. doi:10.1002/jlac.18390300310.
- ^ Carbon tetrachloride
- ^ F. Brezina, J. Mollin, R. Pastorek, Z. Sindelar. Chemicke tabulky anorganickych sloucenin (Chemical tables of inorganic compounds). SNTL, 1986.
- ^ Doherty RE (2000). "A History of the Production and Use of Carbon Tetrachloride, Tetrachloroethylene, Trichloroethylene and 1,1,1-Trichloroethane in the United States: Part 1—Historical Background; Carbon Tetrachloride and Tetrachloroethylene". Environmental Forensics 1 (1): 69–81. doi:10.1006/enfo.2000.0010.
- ^ U.S. Patent 1,010,870, filed April 5, 1910.
- ^ U.S. Patent 1,105,263, filed Jan 7, 1911.
- ^ "Pyrene Fire Extinguishers". Vintage Fire Extinguishers. http://www.vintagefe.com/pyrene.html. Retrieved 23 December 2009.
- ^ a b c Use of Ozone Depleting Substances in Laboratories. TemaNord 516/2003.
- ^ a b Seifert WF, Bosma A, Brouwer A, et al (January 1994). "Vitamin A deficiency potentiates carbon tetrachloride-induced liver fibrosis in rats". Hepatology 19 (1): 193–201. doi:10.1002/hep.1840190129. PMID 8276355.
- ^ W. Reusch. "Introduction to Nuclear Magnetic Resonance Spectroscopy". Virtual Textbook of Organic Chemistry. Michigan State University. http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm.
- ^ Liu KX, Kato Y, Yamazaki M, Higuchi O, Nakamura T, Sugiyama Y (April 1993). "Decrease in the hepatic clearance of hepatocyte growth factor in carbon tetrachloride-intoxicated rats". Hepatology 17 (4): 651–60. doi:10.1002/hep.1840170420. PMID 8477970.
- ^ Recknagel R.O., Glende E.A., Dolak J.A., Waller R.L. (1989). "Mechanism of Carbon-tetrachloride Toxicity". Pharmacology Therapeutics 43 (43): 139–154. doi:10.1016/0163-7258(89)90050-8.
- ^ Recknagel RO (June 1967). "Carbon tetrachloride hepatotoxicity". Pharmacol. Rev. 19 (2): 145–208. PMID 4859860. http://pharmrev.aspetjournals.org/cgi/pmidlookup?view=long&pmid=4859860.
- ^ Masuda Y (October 2006). "[Learning toxicology from carbon tetrachloride-induced hepatotoxicity"] (in Japanese). Yakugaku Zasshi 126 (10): 885–99. doi:10.1248/yakushi.126.885. PMID 17016019. http://joi.jlc.jst.go.jp/JST.JSTAGE/yakushi/126.885?from=PubMed&lang=en.[dead link]
- ^ Rood AS, McGavran PD, Aanenson JW, Till JE (August 2001). "Stochastic estimates of exposure and cancer risk from carbon tetrachloride released to the air from the rocky flats plant". Risk Anal. 21 (4): 675–95. doi:10.1111/0272-4332.214143. PMID 11726020.
- ^ Material Safety Data Sheet, Carbon tetrachloride at Fisher Scientific
- ^ Odabasi M (2008). "Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach-Containing Household Products". Environmental Science & Technology 42 (5): 1445–51. doi:10.1021/es702355u.
- ^ Fraser P. (1997). "Chemistry of stratospheric ozone and ozone depletion". Australian Meteorological Magazine 46 (3): 185–193.
- ^ Evans WFJ, Puckrin E (1996). "A measurement of the greenhouse radiation associated with carbon tetrachloride (CCl4)". Geophysical Research Letters 23 (14): 1769–72. Bibcode 1996GeoRL..23.1769E. doi:10.1029/96GL01258.
- ^ Walker, S. J., R. F. Weiss & P. K. Salameh (2000). "Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113 and carbon tetrachloride". Journal of Geophysical Research 105: 14285–96. Bibcode 2000JGR...10514285W. doi:10.1029/1999JC900273.
- ^ The Atlas of Climate Change (2006) by Kirstin Dow and Thomas E. Downing ISBN 978-0-520-25558-6
External links
- International Chemical Safety Card 0024
- NIOSH Pocket Guide to Chemical Hazards 0107
- "Carbon Tetrachloride (Group 2B)". International Agency for Research on Cancer (IARC) – Summaries & Evaluations 71: 401. 1999. http://www.inchem.org/documents/iarc/vol71/011-carbontetrac.html.
- IARC Monograph: "Carbon Tetrachloride"
- Toxicological profile for carbon tetrachloride
- Environmental health criteria for carbon tetrachloride
- Carbon tetrachloride MSDS at Hazardous Chemical Database
- MSDS at Oxford University
- Egli C, Tschan T, Scholtz R, Cook AM, Leisinger T (November 1988). "Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii". Appl. Environ. Microbiol. 54 (11): 2819–24. PMC 204379. PMID 3145712. http://aem.asm.org/cgi/pmidlookup?view=long&pmid=3145712.|
- Picardal FW, Arnold RG, Couch H, Little AM, Smith ME (November 1993). "Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200". Appl. Environ. Microbiol. 59 (11): 3763–70. PMC 182529. PMID 8285682. http://aem.asm.org/cgi/pmidlookup?view=long&pmid=8285682.
- Substance profile at ntp.niehs.nih.gov
- ChemSub Online: Carbon tetrachloride.
Halomethanes Monosubstituted Disubstituted Trisubstituted Inorganic carbon compounds Categories:- Organochlorides
- Halomethanes
- Inorganic carbon compounds
- Nonmetal halides
- Chlorides
- Aerosol propellants
- Greenhouse gases
- Hazardous air pollutants
- Organochloride insecticides
- Refrigerants
- Halogenated solvents
- IARC Group 2B carcinogens
- Inorganic solvents
Wikimedia Foundation. 2010.