Sodium hypochlorite

Sodium hypochlorite
Sodium hypochlorite
CAS number 7681-52-9 YesY
PubChem 24340
ChemSpider 22756 YesY
EC number 231-668-3
UN number 1791
KEGG D01711 YesY
RTECS number NH3486300
Jmol-3D images Image 1
Molecular formula NaOCl
Molar mass 74.44 g/mol
Appearance white solid
Density 1.11 g/cm3
Melting point

18 °C, 291 K, 64 °F (pentahydrate)

Boiling point

101 °C, 374 K, 214 °F (decomp.)

Solubility in water 29.3 g/100mL (0 °C)
Acidity (pKa) <7
MSDS ICSC 1119 (solution, >10% active chlorine)
ICSC 0482 (solution, <10% active chlorine)
EU Index 017-011-00-1
EU classification Corrosive (C)
Dangerous for the environment (N)
R-phrases R31, R34, R50
S-phrases (S1/2), S28, S45, S50, S61
NFPA 704
NFPA 704.svg
Related compounds
Other anions Sodium chloride
Sodium chlorite
Sodium chlorate
Sodium perchlorate
Other cations Lithium hypochlorite
Calcium hypochlorite
Related compounds Hypochlorous acid
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Sodium hypochlorite is a chemical compound with the formula NaClO. Sodium hypochlorite solution, commonly known as bleach or chlorox, is frequently used as a disinfectant or a bleaching agent.



Sodium hypochlorite was first produced in 1789 by Claude Louis Berthollet in his laboratory on the quay Javel in Paris, France, by passing chlorine gas through a solution of sodium carbonate. The resulting liquid, known as "Eau de Javel" ("Javel water"), was a weak solution of sodium hypochlorite. However, this process was not very efficient, and alternative production methods were sought. One such method involved the extraction of chlorinated lime (known as bleaching powder) with sodium carbonate to yield low levels of available chlorine. This method was commonly used to produce hypochlorite solutions for use as a hospital antiseptic that was sold under the trade names "Eusol" and "Dakin's solution".

Near the end of the nineteenth century, E. S. Smith patented a method of sodium hypochlorite production involving electrolysis of brine to produce sodium hydroxide and chlorine gas, which then mixed to form sodium hypochlorite.[1] This is known as the chloralkali process. Both electric power and brine solution were in cheap supply at the time, and various enterprising marketers took advantage of the situation to satisfy the market's demand for sodium hypochlorite. Bottled solutions of sodium hypochlorite were sold under numerous trade names.

Today, an improved version of this method, known as the Hooker process, is the only large scale industrial method of sodium hypochlorite production. In the process, sodium hypochlorite (NaClO) and sodium chloride (NaCl) are formed when chlorine is passed into cold and dilute sodium hydroxide solution. It is prepared industrially by electrolysis with minimal separation between the anode and the cathode. The solution must be kept below 40 °C (by cooling coils) to prevent the undesired formation of sodium chlorate.

Cl2 + 2 NaOH → NaCl + NaOCl + H2O

Hence, chlorine is simultaneously reduced and oxidized; this process is known as disproportionation.

The commercial solutions always contain significant amounts of sodium chloride (common salt) as the main by-product, as seen in the equation above.

Packaging and sale

Household bleach sold for use in laundering clothes is a 3-6% solution of sodium hypochlorite at the time of manufacture. Strength varies from one formulation to another and gradually decreases with long storage.

A 12% solution is widely used in waterworks for the chlorination of water, and a 15% solution is more commonly[2] used for disinfection of waste water in treatment plants. Sodium hypochlorite can also be used for point-of-use disinfection of drinking water.[3]

It can also be found on store shelves in Daily Sanitizing Sprays, as the sole active ingredient at 0.0095%.[4]


Sodium hypochlorite reacts with metals gradually, such as zinc, to produce the metal oxide or hydroxide:

NaClO + Zn → ZnO + NaCl

It reacts with hydrochloric acid to release chlorine gas:

NaClO + 2 HCl → Cl2 + H2O + NaCl

It reacts with other acids, such as acetic acid, to release hypochlorous acid:


It decomposes when heated or evaporated to form sodium chlorate and sodium chloride:

3 NaClO → NaClO3 + 2 NaCl

In reaction with hydrogen peroxide it gives off molecular oxygen:

NaClO + H2O2 → H2O + NaCl + O2



Household bleach is, in general, a solution containing 4-6% sodium hypochlorite and 0.01-0.05% sodium hydroxide; the sodium hydroxide is used to delay the breakdown of sodium hypochlorite into sodium chloride and sodium chlorate.[5]

In household form, sodium hypochlorite is used for removal of stains from laundry. It is particularly effective on cotton fiber, which stains easily but bleaches well. Usually 50 to 250 mL of bleach per load is recommended for a standard-size washer. The properties of household bleach that make it effective for removing stains also result in cumulative damage to organic fibers, such as cotton, and the useful lifespan of these materials will be shortened with regular bleaching. The sodium hydroxide (NaOH) that is also found in household bleach (as noted later) causes fiber degradation as well. It is not volatile, and residual amounts of NaOH not rinsed out will continue slowly degrading organic fibers in the presence of humidity. For these reasons, if stains are localized, spot treatments should be considered whenever possible. With safety precautions, post-treatment with vinegar (or another weak acid) will neutralize the NaOH, and volatilize the chlorine from residual hypochlorite. Old T-shirts and cotton sheets that rip easily demonstrate the costs of laundering with household bleach. Hot water increases the effectiveness of the bleach, owing to the increased reactivity of the molecules.


A weak solution of 2% household bleach in warm water is used to sanitize smooth surfaces prior to brewing of beer or wine. Surfaces must be rinsed to avoid imparting flavors to the brew; these chlorinated byproducts of sanitizing surfaces are also harmful.

US Government regulations (21 CFR Part 178) allow food processing equipment and food contact surfaces to be sanitized with solutions containing bleach, provided that the solution is allowed to drain adequately before contact with food, and that the solutions do not exceed 200 parts per million (ppm) available chlorine (for example, one tablespoon of typical household bleach containing 5.25% sodium hypochlorite, per gallon of water). If higher concentrations are used, the surface must be rinsed with potable water after sanitizing.

A 1-in-5 dilution of household bleach with water (1 part bleach to 4 parts water) is effective against many bacteria and some viruses, and is often the disinfectant of choice in cleaning surfaces in hospitals (primarily in the United States). The solution is corrosive, and needs to be thoroughly removed afterwards, so the bleach disinfection is sometimes followed by an ethanol disinfection. Even "scientific-grade", commercially produced disinfection solutions such as Virocidin-X usually have sodium hypochlorite as their sole active ingredient, though they also contain surfactants (to prevent beading) and fragrances (to conceal the bleach smell).[6]

Water treatment

For shock chlorination of wells or water systems, a 3% solution of household bleach is used. For larger systems, sodium hypochlorite is more practical because lower rates can be used. The alkalinity of the sodium hypochlorite solution also causes the precipitation of minerals such as calcium carbonate, so that the shock chlorination is often accompanied by a clogging effect. The precipitate also preserves bacteria, making this practice somewhat less effective.

Sodium hypochlorite has been used for the disinfection of drinking water. A concentration equivalent to about 1 liter of household bleach per 4000 liters of water is used. The exact amount required depends on the water chemistry, temperature, contact time, and presence or absence of sediment. In large-scale applications, residual chlorine is measured to titrate the proper dosing rate. For emergency disinfection, the United States Environmental Protection Agency recommends the use of 2 drops of 5%ac[clarification needed] household bleach per litre of water. If the treated water does not smell of bleach, 2 more drops are to be added.

The use of chlorine-based disinfectants in domestic water, although widespread, has led to some controversy due to the formation of small quantities of harmful byproducts such as chloroform.

An alkaline solution (pH 11.0) of sodium hypochlorite is used to treat dilute (< 1 g/L) cyanide wastewater, e.g., rinsewater from an electroplating shop. In batch treatment operations, sodium hypochlorite has been used to treat more concentrated cyanide wastes, such as silver cyanide plating solutions. A well-mixed solution is fully treated when an excess of chlorine is detected.


Sodium hypochlorite is now used in endodontics during root canal treatments. It is the medicament of choice due to its efficacy against pathogenic organisms and pulp digestion. In previous times, Henry Drysdale Dakin's solution (0.5%) had been used. Its concentration for use in endodontics today varies from 0.5% to 5.25%. At low concentrations it will dissolve mainly necrotic tissue; whereas at higher concentrations tissue dissolution is better but it also dissolves vital tissue, a generally undesirable effect. It has been shown that clinical effectiveness does not increase conclusively for concentrations higher than 1%.[7]


Household bleach, with a phase-transfer catalyst, has been reported to oxidize alcohols to the corresponding carbonyl compound.[8]

Nerve Agent Neutralization

At the various nerve agent destruction facilities throughout the United States, 50% sodium hypochlorite is used as a means of removing all traces of nerve agent or blister agent from PPE (Personal Protection Equipment) after an entry is made by personnel into toxic areas. 50% sodium hypochlorite is also used to neutralize any accidental releases of nerve agent in the toxic areas. Lesser concentrations of sodium hypochlorite are used in similar fashion in the PAS (Pollution Abatement System) to ensure that no nerve agent is released in furnace flue gas.

Mechanism of action


Sodium hypochlorite is a strong oxidizer. Oxidation reactions are corrosive, solutions burn skin and cause eye damage, in particular, when used in concentrated forms. However, as recognized by the NFPA, only solutions containing more than 40% sodium hypochlorite by weight are considered hazardous oxidizers. Solutions less than 40% are classified as a moderate oxidizing hazard (NFPA 430, 2000).

Chlorination of drinking water can oxidize organic contaminants, producing trihalomethanes (also called haloforms), which are carcinogenic.

Household bleach and pool chlorinator solutions are typically stabilized by a significant concentration of lye (caustic soda, NaOH) as part of the manufacturing reaction. Skin contact will produce caustic irritation or burns due to defatting and saponification of skin oils and destruction of tissue. The slippery feel of bleach on skin is due to this process.

Sodium thiosulfate (thio) is an effective chlorine neutralizer. Rinsing with a 5 mg/L solution, followed by washing with soap and water, quickly removes chlorine odor from the hands.

Mixing bleach with some household cleaners can be hazardous. For example, mixing an acid cleaner with sodium hypochlorite bleach generates chlorine gas. Mixing with ammonia solutions (including urine) produces chloramines.

NH4OH + NaClO → NaOH + NH2Cl + H2O

Both chlorine gas and chloramine gas are toxic. Bleach can react violently with hydrogen peroxide and produce oxygen gas:[9]

H2O2(aq) + NaClO(aq) → NaCl(aq) + H2O(l) + O2(g)

It is estimated that there are about 3300 accidents needing hospital treatment caused by sodium hypochlorite solutions each year in British homes (RoSPA, 2002).

One major concern arising from sodium hypochlorite use is that it tends to form chlorinated organic compounds; this can occur during household storage and use as well during industrial use.[5] For example, when household bleach and wastewater were mixed, 1-2% of the available chlorine was observed to form organic compounds.[5] As of 1994, not all the byproducts had been identified, but identified compounds include chloroform and carbon tetrachloride.[5] The estimated exposure to these chemicals from use is estimated to be within occupational exposure limits.[5]

A recent European study indicated that sodium hypochlorite and organic chemicals (e.g., surfactants, fragrances) contained in several household cleaning products can react to generate chlorinated volatile organic compounds (VOCs).[10] These chlorinated compounds are emitted during cleaning applications, some of which are toxic and probable human carcinogens. The study showed that indoor air concentrations significantly increase (8-52 times for chloroform and 1-1170 times for carbon tetrachloride, respectively, above baseline quantities in the household) during the use of bleach containing products. The increase in chlorinated volatile organic compound concentrations was the lowest for plain bleach and the highest for the products in the form of “thick liquid and gel”. The significant increases observed in indoor air concentrations of several chlorinated VOCs (especially carbon tetrachloride and chloroform) indicate that the bleach use may be a source that could be important in terms of inhalation exposure to these compounds. While the authors suggested that using these cleaning products may significantly increase the cancer risk,[11] this conclusion appears to be hypothetical:

  • The highest level cited for concentration of carbon tetrachloride (seemingly of highest concern) is 459 micrograms per cubic meter, translating to 0.073 ppm (part per million), or 73 ppb (part per billion). The OSHA-allowable time-weighted average concentration over an eight-hour period is 10 ppm,[12] almost 140 times higher;
  • The OSHA highest allowable peak concentration (5-minute exposure for five minutes in a 4-hour period) is 200 ppm,[12] twice as high as the reported highest peak level (from the headspace of a bottle of a sample of bleach plus detergent).

Further studies of the use of these products and other possible exposure routes (i.e., dermal) may reveal other risks. Though the author further cited ozone depletion greenhouse effects for these gases, the very low amount of such gases, generated as prescribed, should minimize their contribution relative to other sources.


  1. ^ "How Products Are Made Volume 2". may 2011. 
  2. ^ Metcalf & Eddy, Inc (1991). Wastewater Engineering: Treatment, Disposal, & Reuse 3rd Edition; pg 497
  3. ^ Daniele S. Lantagne (2008). "Sodium hypochlorite dosage for household and emergency water treatment". E-Journal AWWA 100 (8). 
  4. ^ "What is in Daily Sanitizing Spray?". March 2010. 
  5. ^ a b c d e Smith WT. (1994). Human and Environmental Safety of Hypochlorite. In: Proceedings of the 3rd World Conference on Detergents: Global Perspectives, pp. 183-5.
  6. ^
  7. ^ Zehnder M et al. (2002). "Tissue dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions". Oral Surg Oral Med Oral Pathol Oral Radio Endodon 94 (6): 756–62. doi:10.1067/moe.2002.128961. PMID 12464903. 
  8. ^ G. A. Mirafzal and A. M. Lozeva (1998). "Phase transfer catalyzed oxidation of alcohols with sodium hypochlorite". Tetrahedron Letters 39 (40): 7263–7266. doi:10.1016/S0040-4039(98)01584-6. 
  9. ^ "Hydrogen Peroxide + Bleach Explanation". Retrieved 13 December 2008. 
  10. ^ Odabasi, M., “Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach- Containing Household Products”, Environmental Science & Technology 42, 1445-1451, (2008). Available at:
  11. ^ Odabasi, M., “Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach- Containing Household Products, Slide presentation (2008). Available at:
  12. ^ a b


  • Jones, F.-L. (1972). "Chlorine poisoning from mixing household cleaners". J. Am. Med. Assoc. 222 (10): 1312. doi:10.1001/jama.222.10.1312. 
  • Institut National de Recherche et de Sécurité. (2004). "Eaux et extraits de Javel. Hypochlorite de sodium en solution". Fiche toxicologique n° 157, Paris.

External links

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • sodium hypochlorite — n an unstable salt NaOCl produced usu. in aqueous solution and used as a bleaching and disinfecting agent * * * a salt of sodium used in solution as an antiseptic and disinfectant. In dentistry a 0.5 5.0% solution is used for washing out infected …   Medical dictionary

  • sodium hypochlorite — n. a greenish, unstable salt, NaOCl, usually stored in solution, used esp. as a bleaching agent and disinfectant …   English World dictionary

  • sodium hypochlorite — noun an unstable salt (NaOCl) used as a bleaching agent and disinfectant • Hypernyms: ↑hypochlorite, ↑bleaching agent, ↑bleach, ↑blanching agent, ↑whitener, ↑disinfectant, ↑germicide, ↑antimicrobic, ↑ …   Useful english dictionary

  • sodium hypochlorite — natrio hipochloritas statusas T sritis chemija formulė NaClO atitikmenys: angl. sodium hypochlorite rus. натрий хлорноватистокислый; натрия гипохлорит ryšiai: sinonimas – natrio monooksochloratas …   Chemijos terminų aiškinamasis žodynas

  • sodium hypochlorite solution — [USP] a clear, pale, greenish yellow liquid with the odor of chlorine, containing 4–6 per cent sodium hypochlorite; used as a disinfectant for utensils, etc., but not suitable for application to wounds. It has also been used as a deodorant and… …   Medical dictionary

  • sodium hypochlorite topical solution — [USP] a colorless to light yellow liquid containing between 0.20 and 0.32 g of sodium hypochlorite in a topical solution; used as a local anti infective …   Medical dictionary

  • sodium hypochlorite — noun The unstable sodium salt of hypochlorous acid, NaOCl, used as a bleach and a fungicide …   Wiktionary

  • sodium hypochlorite — a salt of sodium used in solution as a disinfectant. In dentistry a 0.5–5.0% solution is used for washing out, cleaning, and disinfecting infected root canals …   The new mediacal dictionary

  • sodium hypochlorite — noun Date: 1885 an unstable salt NaOCl produced usually in aqueous solution and used as a bleaching and disinfecting agent …   New Collegiate Dictionary

  • sodium hypochlorite — Chem. a pale green, crystalline compound, NaOCl, unstable in air, soluble in cold water, decomposes in hot water: used as a bleaching agent for paper and textiles, in water purification, in household use, and as a fungicide. [1880 85] * * * …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”