Sodium azide

Sodium azide
Sodium azide
CAS number 26628-22-8 YesY
ChemSpider 30958 YesY
EC number 247-852-1
UN number 1687
ChEBI CHEBI:278547 N
RTECS number VY8050000
Jmol-3D images Image 1
Molecular formula NaN3
Molar mass 65.0099 g/mol
Appearance white solid
Odor odorless
Density 1.846 g/cm3 (20 °C)
Melting point

275 °C decomp.

Solubility in water 41.7 g/100 mL (17 °C)
Solubility in alcohol 0.316 g/100 mL (16 °C)
Solubility in ammonia soluble
Crystal structure Hexagonal, hR12[1]
Space group R-3m, No. 166
MSDS External MSDS
EU Index 011-004-00-7
EU classification Highly toxic (T+)
Dangerous for the environment (N)
R-phrases R28, R32, R50/53
S-phrases (S1/2), S28, S45, S60, S61
NFPA 704
NFPA 704.svg
Flash point 300 °C
LD50 27 mg/kg (oral, rats/mice)[1]
Related compounds
Other anions Sodium cyanide
Other cations Potassium azide
Ammonium azide
 N (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Sodium azide is the inorganic compound with the formula NaN3. This colourless azide salt is the gas-forming component in many car airbag systems. It is used for the preparation of other azide compounds. It is an ionic substance and is highly soluble in water. It is extremely toxic.



Sodium azide is an ionic solid. Two crystalline forms are known, rhombohedral and hexagonal.[1][2] The azide anion is very similar in each, being centrosymmetric with N–N distances of 1.18 Å. The Na+ ion is pentacoordinated.


The common synthesis method is the "Wislicenus process," which proceeds in two steps from ammonia. In the first step, ammonia is converted to sodium amide:

2 Na + 2 NH3 → 2 NaNH2 + H2

The sodium amide is subsequently combined with nitrous oxide:

2 NaNH2 + N2O → NaN3 + NaOH + NH3

Alternatively the salt can be obtained by the reaction of sodium nitrate with sodium amide.[3]


Automobile airbags and airplane escape chutes

Older airbag formulations contained mixtures of oxidizers and sodium azide and other agents including igniters and accelerants. An electronic controller detonates this mixture during an automobile crash:

2 NaN3 → 2 Na + 3 N2

The same reaction occurs upon heating the salt to approximately 300 °C. The sodium that is formed is a potential hazard itself and, in automobile airbags, it is converted by reaction with other ingredients, such as potassium nitrate and silica. In the latter case, innocuous sodium silicates are generated.[4] Sodium azide is also used in airplane escape chutes. No toxicity has been reported from spent airbags.[5] Newer generation air bags contain nitroguanidine or similar less sensitive explosives.

Organic synthesis

Due to its explosion hazard, sodium azide is of only limited value in industrial scale organic chemistry. In the laboratory, it is used in organic synthesis to introduce the azide functional group by displacement of halides. The azide functional group can thereafter be converted to an amine by reduction with either lithium aluminium hydride or a tertiary phosphine such as triphenylphosphine in the Staudinger reaction, with Raney nickel or with hydrogen sulfide in pyridine.

Inorganic synthesis

Sodium azide is a versatile precursor to other inorganic azide compounds, e.g. lead azide and silver azide, which are used in explosives.

Biochemistry and biomedical uses

Sodium azide is a useful probe reagent, mutagen, and preservative. In hospitals and laboratories, it is a biocide; it is especially important in bulk reagents and stock solutions which may otherwise support bacterial growth where the sodium azide acts as a bacteriostatic by inhibiting cytochrome oxidase in gram-negative bacteria; gram-positive (streptococci, pneumococci, lactobacilli) are resistant,[6] a characteristic similar to antibiotic resistance. It is also used in agriculture for pest control.

Azide inhibits cytochrome oxidase by binding irreversibly to the heme cofactor in a process similar to the action of carbon monoxide. Sodium azide particularly affects organs that undergo high rates of respiration, such as the heart and the brain.


Treatment of sodium azide with strong acids gives hydrazoic acid, which is also extremely toxic:

H+ + N

Aqueous solutions contain minute amounts of hydrogen azide, as described by the following equilibrium:

+ H2O is in equilibrium with HN3 + OH (K = 10−4.6

Sodium azide can be destroyed by treatment with nitrous acid solution:[7]

2 NaN3 + 2 HNO2 → 3 N2 + 2 NO + 2 NaOH


Sodium azide is acutely toxic. Symptoms are often compared with those of cyanide. Ingestion of dust or solutions can induce the following symptoms within minutes: rapid breathing, restlessness, dizziness, weakness, headache, nausea and vomiting, rapid heart rate, red eyes (gas or dust exposure), clear drainage from the nose (gas or dust exposure), cough (gas or dust exposure), skin burns and blisters (explosion or direct skin contact). Exposure to a large amount of sodium azide may cause these other health effects as well: convulsions, low blood pressure, low heart rate, loss of consciousness, and lung injury, respiratory failure leading to death.[8]


  1. ^ a b c Stevens E.D., Hope H. (1977). "A Study of the Electron-Density Distribution in Sodium Azide, NaN3". Acta Crystallographica A 33: 723. 
  2. ^ Wells, A. F. (1984), Structural Inorganic Chemistry (5th ed.), Oxford: Clarendon Press, ISBN 0-19-855370-6 
  3. ^ Holleman, A. F.; Wiberg, E. (2001), Inorganic Chemistry, San Diego: Academic Press, ISBN 0-12-352651-5 
  4. ^ Eric A. Betterton (2003). "Environmental Fate of Sodium Azide Derived from Automobile Airbags". Critical Reviews in Environmental Science and Technology 33 (4): 423–458. doi:10.1080/10643380390245002. 
  5. ^ Kent R. Olson (2007). Poisoning and Drug Overdose. McGraw-Hill Professional. ISBN 0071443339. 
  6. ^ Lichstein, Herman C.; Malcolm H. Soule (1943). "Studies of the Effect of Sodium Azide on Microbic Growth and Respiration: I. The Action of Sodium Azide on Microbic Growth". Journal of Bacteriology 47 (3): 221–230. PMC 373901. PMID 16560767. 
  7. ^ Committee on Prudent Practices for Handling, Storage, and Disposal of Chemicals in Laboratories, Board on Chemical Sciences and Technology, Commission on Physical Sciences, Mathematics, and Applications, National Research Council. (1995). Prudent practices in the laboratory: handling and disposal of chemicals. Washington, D.C.: National Academy Press. ISBN 0309052297. 
  8. ^ Mallinckrodt Baker, Inc. (2008-11-21). "MSDS: sodium azide". Environmental Health & Safety, USA. MSDS S2906. 

External links

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • sodium azide — azide az ide n. (Chem.) any chemical compound containing the azido group { N3}, such as {sodium azide} (ionic and inorganic) or {ethyl azide} (organic and nonionic). [PJC] …   The Collaborative International Dictionary of English

  • sodium azide — noun Date: circa 1937 a poisonous crystalline salt NaN3 used especially to make lead azide …   New Collegiate Dictionary

  • sodium azide — noun : a poisonous crystalline salt NaN3 used especially to make lead azide …   Useful english dictionary

  • sodium azide — noun a white, crystalline salt, NaN; it is explosive, and is used in automobile airbags …   Wiktionary

  • Sodium nitrite — Sodium nitrite …   Wikipedia

  • azide — az ide n. (Chem.) any chemical compound containing the azido group { N3}, such as {sodium azide} (ionic and inorganic) or {ethyl azide} (organic and nonionic). [PJC] …   The Collaborative International Dictionary of English

  • Azide — The azide anion The azide functional group Azide is the anion with the formula N3−. It is the conjugate base of hydrazoic acid. N3− is a linear …   Wikipedia

  • azide — /az uyd, id, ay zuyd, ay zid/, n. Chem. any compound containing the azido group, as sodium azide, NaN3. [AZ + IDE] * * * ▪ chemical compound       any of a class of chemical compounds containing three nitrogen atoms as a group, represented as (… …   Universalium

  • Azide — Azoture Les azotures sont les sels de l acide azothydrique HN3, ainsi que les azotures organiques dans lesquels un des atomes d azotes est lié de façon covalents avec un atome de carbone d un composé organique. Les azotures organiques peuvent par …   Wikipédia en Français

  • Sodium — This article is about the chemical element. For the PlayStation Home game, see Sodium (PlayStation Home). neon ← sodium → magnesium Li ↑ Na ↓ K …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”