- Phosphine
Chembox new
Name = Phosphine
ImageFile = Phosphine.png
ImageSize = 100px
ImageName = Phosphine
ImageFileL1 = Phosphine-3D-balls.png
ImageSizeL1 = 100px
ImageFileR1 = Phosphine-3D-vdW.png
ImageSizeR1 = 120px
IUPACName = Phosphane
OtherNames = Phosphine
Phosphamine
Phosphorus hydride
Phosphorated hydrogen
Section1 = Chembox Identifiers
CASNo = 7803-51-2
Section2 = Chembox Properties
Formula = PH3
MolarMass = 34.00 g/mol
Appearance = colorless gas
Density = 1.379 g/l, gas (25 °C)
Solubility = 31.2 mg/100 ml (17 °C)
MeltingPt = −134 °C
BoilingPt = −87.8 °C
Section3 = Chembox Structure
MolShape = Trigonal pyramidal
Dipole = 0.58 D
Section7 = Chembox Hazards
EUClass = Highly flammable (F+)
Very toxic (T+)
Dangerous for
the environment (N)
NFPA-H = 3
NFPA-F = 4
NFPA-R = 2
RPhrases = R12, R17, R26, R34, R50
SPhrases = S1/2, S28, S36/37, S45,
S61, S63
FlashPt = flammable gas
Autoignition = 38 °C ("see text")
Section8 = Chembox Related
OtherCations =Ammonia Arsine Stibine Bismuthine
OtherCpds =Trimethylphosphine Triphenylphosphine Phosphine is the common name for phosphorus hydride (PH3), also known by the
IUPAC name phosphane and, occasionally, phosphamine. It is a colorless, flammable gas with a boiling point of −88 °C atstandard pressure . Pure phosphine is odourless, but "technical grade" phosphine has a highly unpleasant odor likegarlic or rotting fish, due to the presence of substitutedphosphine anddiphosphine (P2H4). Phosphines are also a group of substituted phosphines, with the structure R3P, where other functional groups replace hydrogens. They are important in catalysts where they complex to various metal ions; a chiral metal phosphine complex can catalyze a reaction to give chiral products.Phosphine is highly toxic; it kills at low concentrations. Because of this, the gas is used for pest control by
fumigation . For farm use, it is often sold in the form ofaluminium phosphide ,calcium phosphide , orzinc phosphide pellets, which yield phosphine on contact with atmospheric water or rodents' stomach acid. These pellets also contain other chemicals which evolveammonia which helps to reduce the potential for spontaneous ignition orexplosion of the phosphine gas. They may also contain other agents, such asmethanethiol , to give the gas a detectable garlic smell to help warn against its presence in the atmosphere.Phosphine is also used as a
dopant in thesemiconductor industry, and a precursor for the deposition ofcompound semiconductor s. Recently [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TJ6-4DHXJV5-8&_user=10&_handle=V-WA-A-W-ABD-MsSAYVA-UUA-U-AAZCEEDYVY-AAZBCDYZVY-ZCZZCDYU-ABD-U&_fmt=summary&_coverDate=12%2F10%2F2004&_rdoc=97&_orig=browse&_srch=%23toc%235302%232004%23997279998%23530941!&_cdi=5302&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d7fa573ff50b10d4975aed0deddcb80a high purity tertiary butyl phosphine (TBP)] has been developed as a less hazardous liquid alternative to highly toxic phosphine gas, for application in Metalorganic Vapor Phase Epitaxy (MOVPE ) of III-Vcompound semiconductor s. Alternatively phosphine can be packaged in a cylinder containing a solid microporous adsorbent at 0 PSIG. The system is called a sub-atmospheric gas source. This type of packaging permits the gas to be stored without pressure which significantly reduces the risk of a phosphine gas leak from the cylinder. The system is able to deliver gas by applying vacuum to the cylinder valve outlet. For semiconductor manufacturing, this is a practical approach as the processes usually operate under high vacuum.Phosphine is probably a normally occurring constituent of the atmosphere at very low and highly variable concentrations and hence may contribute to the global phosphorus biochemical cycle [Gassmann et al, "Phosphine in the lower terrestrial troposphere", "Naturwissenschaften", 1996, 83(3), 129-31, (Eng).] . The origin(s) of atmospheric phosphine is not certain. Possible sources include bacterial reduction of phosphate in decaying organic matter, although this is not thermodynamically favorable, and processes related to corrosion of metals containing phosphorus impurities. [J. Roels & W. Verstraete, "Biological formation of volatile phosphorus compounds, a review paper", Bioresource Technology 79 (2001), 243-250.]
History
Perhaps because of its strong association with elemental
phosphorus , phosphine was once regarded as a gaseous form of the element butLavoisier (1789) recognised it as a combination of phosphorus with hydrogen by describing it as “hydruyet of phosphorus, or phosphuret of hydrogen”.Ernst von Meyer (1891) described the early history of phosphine research thus:"The discovery of phosphuretted hydrogen (PH3) byGengembre in 1783, and the examination of it byPelletier (who was the first to prepare it pure), only became fruitful afterHumphry Davy ’s investigations; and the last-named elucidated the composition of this gas, and pointed out its analogy toammonia , this being emphasised still more sharply by H. Rose later on."Thénard (1845) used acold trap to separate diphosphine from phosphine that had been generated fromcalcium phosphide , thereby demonstrating that P2H4 is responsible for spontaneous flammability associated with PH3, and also for the characteristic orange/brown colour that can form on surfaces, which is a polymerisation product. He considered diphosphine’s formula to be PH2, and thus an intermediate between elemental phosphorus, the higher polymers, and phosphine. Calcium phosphide (nominally Ca3P2) produces more P2H4 than other phosphides because of the preponderance of P-P bonds in the starting material.tructure and properties
PH3 is a trigonal pyramidal molecule with C3v
molecular symmetry . The length of the P-H bond 1.42 Å, the H-P-Hbond angle s are 93.5°. Thedipole moment is 0.58 D, which increases with substitution ofmethyl group s in the series: CH3PH2, 1.10 D; (CH3)2PH, 1.23 D; (CH3)3P, 1.19 D. In contrast, the dipole moments of amines decrease with substitution, starting withammonia , which has a dipole moment of 1.47 D. The low dipole moment and almost orthogonal bond angles lead to the conclusion that in PH3 the P-H bonds are almost entirely pσ(P) – sσ(H) and the lone pair contributes only a little to themolecular orbital s. The high positive chemical shift of the P atom in31P NMR spectrum accords with the conclusion that the lone pair electrons occupy the 3s orbital and so are close to the P atom (Fluck, 1973). This electronic structure leads to a lack ofnucleophilicity and an inability to formhydrogen bonds .The aqueous
solubility of PH3 is slight; 0.22 mL of gas dissolve in 1 mL of water. Phosphine dissolves more readily in non-polar solvents than in water because of the non-polar P-H bonds. It acts as neither an acid nor a base in water. Proton exchange proceeds via aphosphonium (PH4+) ion in acidic solutions and via PH2− at high pH, with equilibrium constants "K"b = 4 × 10−28 and "K"z = 41.6 × 10−29.Chemistry
Phosphine may be prepared in a variety of ways. [A.D.F. Toy, "The Chemistry of Phosphorus", Pergamon Press, Oxford, UK, 1973.] Industrially it can be made by the reaction of white
phosphorus withsodium hydroxide , producingsodium hypophosphite and sodiumphosphite as a by-product. Alternatively the acid-catalyzed disproportioning of whitephosphorus may be used, which yieldsphosphoric acid and phosphine. Both routes have industrial significance, with the acid route as the preferred method if further reaction of the phosphine to substituted phosphines is needed. This latter step requires purification and pressurizing. It can also be made (as described above) by the hydrolysis of a metal phosphide such asaluminium phosphide orcalcium phosphide . Pure samples of phosphine, free from P2H4, may be prepared using the action ofpotassium hydroxide onphosphonium iodide (PH4I).Phosphines
Related to PH3 is the class of compounds commonly called phosphines. These are alkyl or aryl derivatives of phosphine, just as
amine s can be regarded as derivatives ofammonia . Common examples includetriphenylphosphine ((C6H5)3P) andBINAP , both used as phosphineligand s in metal complexes such asWilkinson's catalyst . Metal phosphine complexes arecatalyst s for reactions such as theSonogashira coupling . Most of these phosphines, with the exception oftriphenyl phosphine , are made from pressurized, purified phosphine gas as described above.A large industrial application of phosphine is found in the production of tetrakis(hydroxymethyl)
phosphonium salts, made by passing phosphine gas through a solution offormaldehyde and amineral acid such ashydrochloric acid . These find application asflame retardants for textile ("Proban(r) - registered trademark of Rhodia UK Limited") and asbiocide s.Phosphine is often confused with
phosgene , (COCl2) which has a similar-sounding name but contains no phosphorus.Use as a fumigant
Phosphine is highly toxic to organisms undergoing oxidative respiration, but is non toxic to organisms kept under low oxygen (<1%) or that can anaerobically respire (i.e. ferment). Because of these characteristics, phosphine is widely used as a
fumigant of metabolically dormant stored products such as grain. The toxicity of phosphine kills insect pests that might infest the grain, but does not affect the viability of the dormant grain.Because continued use of the previously widely used
fumigant methyl bromide has been banned under theMontreal Protocol , phosphine is the only widely used, cost effective, rapidly acting fumigant that does not leave residues on the stored product. Pests developing high levels of resistance toward phosphine have become commonplace in many countries of Asia and in Australia as well. Active research in Australia into the mode of action of phosphine and the mechanisms whereby insects acquire resistance is being carried out by theCSIRO in Canberra, QDPI&F in Queensland and theUniversity of Queensland .ee also
*
Phosphine oxide - OPR3
*Phosphinite - P(OR)R2
*Phosphonite - P(OR)2R
*Phosphite - P(OR)3
*Phosphinate - OP(OR)R2
*Phosphonate - OP(OR)2R
*Phosphate - OP(OR)3References
# E. Fluck, "The chemistry of phosphine", Topics in Current Chemistry Vol. 35, 64 pp, 1973.
# WHO (World Health Organisation), "Phosphine and selected metal phosphides", Environmental Health Criteria. Published under the joint sponsorship of UNEP, ILO and WHO, Geneva, Vol. 73, 100 pp, 1988.External links
* [http://www.ilo.org/public/english/protection/safework/cis/products/icsc/dtasht/_icsc06/icsc0694.htm International Chemical Safety Card 0694]
Wikimedia Foundation. 2010.