An oligotroph is an organism that can live in an environment that offers very low levels of nutrients. They may be contrasted with copiotrophs, which prefer nutritionally rich environments. Oligotrophs are characterized by slow growth, low rates of metabolism, and generally low population density.

The adjective oligotrophic may be used to refer to environments that offer little to sustain life, organisms that survive in such environments, or the adaptations that support survival. Etymologically, the word "oligoptroph" is a combination of the Greek adjective oligos (ὀλίγος)[1] meaning "few" and the adjective trophikos (τροφικός)[2]) meaning "feeding".

Oligotrophic environments include deep oceanic sediments, caves, glacial and polar ice, deep subsurface soil, aquifers, ocean waters, and leached soils.

Examples of oligotrophic organisms are the bacterium, Pelagibacter ubique, which is the most abundant organism in the oceans with an estimated 1027 individuals in total, and the lichens with their extremely low metabolic rate.


Plant adaptations

Plant adaptations to oligotrophic soils provide for greater and more efficient nutrient uptake, reduced nutrient consumption, and efficient nutrient storage. Improvements in nutrient uptake are facilitated by root adaptations such as nitrogen-fixing root nodules, mycorrhizae and cluster roots. Consumption is reduced by very slow growth rates, and by efficient use of low-availability nutrients; for example the use of highly available ions to maintain turgor pressure, with low-availability nutrients reserved for the building of tissues. Despite these adaptations, nutrient requirement typically exceed uptake during the growing season, so many oligotrophic plants have the ability to store nutrients, for example in trunk tissues, when demand is low, and remobilise them when demand increases.

Oligotrophic environments

An ecosystem or environment is said to be oligotrophic if it offers little to sustain life. The term is commonly utilised to describe environments of water, ice, air, rock or soil with very low nutrient levels.

Oligotrophic environments are of special interest for the alternative energy sources and survival strategies upon which life could rely.[citation needed]


Lake Vostok, a freshwater lake which has been isolated from the world beneath 4 km of Antarctic ice for approximately 15 million years[3] is frequently held to be a primary example of an oligotrophic environment.


The sandplains and lateritic soils of southern Western Australia, where an extremely thick craton has precluded any geological activity since the Cambrian and there has been no glaciation to renew soils since the Carboniferous. Thus, soils are extremely nutrient-poor and most vegetation must use strategies such as cluster roots to gain even the smallest quantities of such nutrients as phosphorus and sulfur.

The vegetation in these regions, however, is remarkable for its biodiversity, which in places is as great as that of a tropical rainforest and produces some of the most spectacular wildflowers in the world. It is however, severely threatened by climate change which has moved the winter rain belt south, and also by clearing for agriculture and through use of fertilizers, which is primarily driven by low land costs which make farming economic even with yields a fraction of those in Europe or North America.

South America

An example of oligotrophic soils are those on white-sands, with soil pH lower than 5.0, on the Rio Negro basin on northern Amazonia that house very low-diversity, extremely fragile forests and savannahs drained by blackwater rivers; dark water colour due to high concentration of tannins, humic acids and other organic compounds derived from the very slow decomposition of plant matter.[4][5][6] Similar forests are found in the oligotrophic waters of the Patía River delta on the Pacific side of the Andes.[7]

World Ocean

In the World Ocean, the subtropical gyres north and south of the equator are regions in which the nutrients required for phytoplankton growth (for instance, nitrate, phosphate and silicic acid) are strongly depleted all year round. These areas are described as oligotrophic and exhibit low surface chlorophyll. They are occasionally described as "ocean deserts".[8]

See also


  1. ^ ὀλίγος. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at Perseus Project
  2. ^ τροφικός. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at Perseus Project
  3. ^ Race against time for raiders of the lost lake (17 January 2011) Nature 469, 275 doi:10.1038/469275a
  4. ^ Janzen. D. H. 1974. Tropical Blackwater Rivers, Animals, and Mast Fruiting by the Dipterocarpaceae. Biotropica, Vol. 6, N° 2 (Jul., 1974), pp. 69-103
  5. ^ Sioli, Harald. 1975. Tropical rivers as expressions of their terrestrial environments. In: F.B. Golley & E. Medina (eds.) Tropical Ecological Systems/Trends in Terrestrial and Aquatic Research. pp 275-288
  6. ^ German, Laura A. (December 2004) "Ecological praxis and blackwater ecosystems: a case study from the Brazilian Amazon" Human Ecology: An Interdisciplinary Journal 32(6): pp. 653-683;
  7. ^ Del Valle-Arango, Jorge Ignacio (August 2003) "Cantidad, calidad y nutrientes reciclados por la hojarasca fina en bosques pantanosos del Pacífico sur colombiano." Interciencia 28(8): pp. 443-452 (in Spanish);
  8. ^ "Study Shows Ocean “Deserts” are Expanding". NOAA. 05-03-2008. http://www.noaanews.noaa.gov/stories2008/20080305_oceandesert.html. Retrieved 2009-07-17. 

External links

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Oligotroph — Mit dem Trophiesystem wird der Zustand von Stillgewässern charakterisiert. Die Klassifizierung basiert auf dem Gehalt an Nährstoff Elementen (P, N, C, S), wobei sich (mit Ausnahme von absichtlich gedüngten Gewässern wie Karpfenteichen) der… …   Deutsch Wikipedia

  • oligotroph — oli|go|troph 〈Adj.〉 nährstoffarm, humusarm (Boden) [<grch. oligos „wenig“ + trophe „Nahrung“] * * * oli|go|troph <Adj.> [zu griech. trophe̅̓ = Nahrung] (Biol., Landwirtsch.): (von Böden od. Gewässern) nährstoffarm. * * * oligotroph   [zu …   Universal-Lexikon

  • oligotroph — Organism that can grow in an environment poor in nutrients …   Dictionary of molecular biology

  • oligotroph — noun An organism capable of living in an environment that offers very low levels of nutrients …   Wiktionary

  • oligotroph — ol·i·go·troph (olґĭ go trōf) an oligotrophic organism …   Medical dictionary

  • oligotroph — o|li|go|troph 〈Adj.; Biol.〉 arm an Nährstoffen; Ggs.: entroph; oligotropher Boden [Etym.: <oligo… + …troph] …   Lexikalische Deutsches Wörterbuch

  • oligotroph — oli|go|troph* <zu ↑...troph> nährstoffarm (von Seen od. Ackerböden; Biol., Landw.) …   Das große Fremdwörterbuch

  • oligotroph — oli|go|troph (nährstoffarm [von Ackerböden]) …   Die deutsche Rechtschreibung

  • Durchströmungsmoor — Federsee bei Bad Buchau – eines der bedeutendsten grundwassergespeisten Moorgebiete Süddeutschlands. Die …   Deutsch Wikipedia

  • Filze — Federsee bei Bad Buchau – eines der bedeutendsten grundwassergespeisten Moorgebiete Süddeutschlands. Die …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”