Lotka–Volterra equation

Lotka–Volterra equation

The Lotka–Volterra equations, also known as the "predator-prey equations", are a pair of first order, non-linear, differential equations frequently used to describe the dynamics of biological systems in which two species interact, one a predator and one its prey. They were proposed independently by Alfred J. Lotka in 1925 and Vito Volterra in 1926.

:frac{dx}{dt} = x(alpha - eta y)

:frac{dy}{dt} = - y(gamma - delta x)

where

*"y" is the number of some predator (for example, wolves);
*"x" is the number of its prey (for example, rabbits);
*"dy/dt" and "dx/dt" represents the growth of the two populations against time;
*"t" represents the time; and
*"α", "β", "γ" and "δ" are parameters representing the interaction of the two species.

Physical meanings of the equations

When multiplied out, the equations take a form useful for physical interpretation. Their origin should be considered from a more general framework,:frac{dx}{dt} = f(x,y) x:frac{dy}{dt} = g(x,y) ywhere both functions represent per capita growth rates of the prey and predator, respectively. These functions are too general, so a Taylor series approximation is performed to obtain linearized per capita rates,:f(x,y) = A_0 - A_1 x - A_2 y:g(x,y) = B_0 + B_1 x - B_2 y.The signs of the coefficients arise from assumptions of population regulation, and by choosing nonzero coefficients appropriately, an ecologist can obtain predator-prey, competition, disease, and mutualism models that provide general insight into ecological systems.

Prey

The prey equation becomes:

:frac{dx}{dt} = alpha x - eta x y

The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in equation above by the term "αx". The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by "βxy". If either "x" or "y" is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes:

:frac{dy}{dt} = delta xy - gamma y

In this equation, "δxy" represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). "γy" represents the natural death of the predators; it is an exponential decay.

Hence the equation represents the change in the predator population as the growth of the predator population, minus natural death.

olutions to the equations

The equations have periodic solutions which do not have a simple expression in terms of the usual trigonometric functions. However, an approximate linearised solution yields a simple harmonic motion with the population of predators following that of prey by 90°.



An example problem

Suppose there are two species of animals, a baboon (prey) and a cheetah (predator). If the initial conditions are 80 baboons and 40 cheetahs, one can plot the progression of the two species over time. Time is dimensionless.



One can also plot a solution which corresponds to the oscillatory nature of the population of the two species. At any given time, the solution is somewhere on the inside of these elliptical solutions.

These graphs clearly illustrate a serious problem with this as a biological model: in each cycle, the baboon population is reduced to extremely low numbers yet recovers (while the cheetah population remains sizeable at the lowest baboon density). Given chance fluctuations, discrete numbers of individuals, and the family structure and lifecycle of baboons, the baboons actually go extinct and by consequence the cheetahs as well. This modelling problem has been called the "atto-fox problem" [Mollison, Denis (1991) "Dependence of epidemic and population velocities on basic parameters", Math Biosci 107, 255 - 287. [ftp://ftp.ma.hw.ac.uk/pub/denis/velocities.pdf paper] ] , an atto-fox being an imaginary 10-18 of a fox, in relation to rabies modelling in the UK.

Dynamics of the system

In the model system, the predators thrive when there are plentiful prey but, ultimately, outstrip their food supply and decline. As the predator population is low the prey population will increase again. These dynamics continue in a cycle of growth and decline.

Population equilibrium

Population equilibrium occurs in the model when neither of the population levels is changing, i.e. when both of the differential equations are equal to 0.

:x(alpha - eta y) = 0

:-y(gamma - delta x) = 0

When solved for "x" and "y" the above system of equations yields

:left{ y = 0 , x = 0 ight}

and

:left{ y = frac{alpha}{eta}, x = frac{gamma}{delta} ight},

hence there are two equilibria.

The first solution effectively represents the extinction of both species. If both populations are at 0, then they will continue to be so indefinitely. The second solution represents a fixed point at which both populations sustain their current, non-zero numbers, and, in the simplified model, do so indefinitely. The levels of population at which this equilibrium is achieved depend on the chosen values of the parameters, α, β, γ, and δ.

tability of the fixed points

The stability of the fixed point at the origin can be determined by performing a linearization using partial derivatives, while the other fixed point requires a slightly more sophisticated method.

The Jacobian matrix of the predator-prey model is

:J(x,y) = egin{bmatrix} alpha - eta y & -eta x \delta y & delta x - gamma \end{bmatrix}

First fixed point

When evaluated at the steady state of (0,0) the Jacobian matrix "J" becomes

:J(0,0) = egin{bmatrix}alpha & 0 \0 & -gamma \end{bmatrix}

The eigenvalues of this matrix are

:lambda_1 = alpha,quad lambda_2 = -gamma

In the model "α" and "γ" are always greater than zero, and as such the sign of the eigenvalues above will always differ. Hence the fixed point at the origin is a saddle point.

The stability of this fixed point is of importance. If it were stable, non-zero populations might be attracted towards it, and as such the dynamics of the system might lead towards the extinction of both species for many cases of initial population levels. However, as the fixed point at the origin is a saddle point, and hence unstable, we find that the extinction of both species is difficult in the model. (In fact, this can only occur if the prey are artificially completely eradicated, causing the predators to die of starvation. If the predators are eradicated, the prey population grows without bound in this simple model).

econd fixed point

Evaluating "J" at the second fixed point we get

:Jleft(frac{gamma}{delta},frac{alpha}{eta} ight) = egin{bmatrix}0 & -frac{eta gamma}{delta} \frac{alpha delta}{eta} & 0 \end{bmatrix}

The eigenvalues of this matrix are

:lambda_1 = i sqrt{alpha gamma},quad lambda_2 = -i sqrt{alpha gamma}

As the eigenvalues are both purely imaginary, this fixed point is not hyperbolic, so no conclusions can be drawn from the linear analysis. However, the system admits a constant of motion

: K = y^alpha e^{-eta y} , x^gamma e^{-delta x},

and the level curves "K"=constant are closed trajectories surrounding the fixed point.Consequently, the levels of the predator and prey populations cycle, and oscillate around this fixed point.

ee also

* Lotka-Volterra inter-specific competition equations
* Population dynamics
* Nicholson-Bailey model

References

Bibliography

* E. R. Leigh (1968) The ecological role of Volterra's equations, in "Some Mathematical Problems in Biology" - a modern discussion using Hudson's Bay Company data on lynx and hares in Canada from 1847 to 1903.
* Understanding Nonlinear Dynamics. Daniel Kaplan and Leon Glass.
* V. Volterra. Variations and fluctuations of the number of individuals in animal species living together. In "Animal Ecology". McGraw-Hill, 1931. Translated from 1928 edition by R. N. Chapman.

External links

* [http://www.egwald.ca/nonlineardynamics/twodimensionaldynamics.php#predatorpreymodel Lotka-Volterra Predator-Prey Model] by Elmer G. Wiens
* [http://math.fullerton.edu/mathews/n2003/Lotka-VolterraMod.html Lotka-Volterra Model]
* [http://www.ph.ed.ac.uk/nania/lv/lv.html] NANIA Lotka-Volterra applet


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Competitive Lotka–Volterra equations — The competitive Lotka–Volterra equations are a simple model of the population dynamics of species competing for some common resource. They can be further generalised to include trophic interactions. Contents 1 Overview 1.1 Two species 1.2 N… …   Wikipedia

  • Equations de Lotka-Volterra — Équations de Lotka Volterra En mathématiques, les équations de Lotka Volterra, que l on désigne aussi sous le terme de modèle proie prédateur , sont un couple d équations différentielles non linéaires du premier ordre, et sont couramment… …   Wikipédia en Français

  • Système de Lotka-Volterra — Équations de Lotka Volterra En mathématiques, les équations de Lotka Volterra, que l on désigne aussi sous le terme de modèle proie prédateur , sont un couple d équations différentielles non linéaires du premier ordre, et sont couramment… …   Wikipédia en Français

  • Équations de lotka-volterra — En mathématiques, les équations de Lotka Volterra, que l on désigne aussi sous le terme de modèle proie prédateur , sont un couple d équations différentielles non linéaires du premier ordre, et sont couramment utilisées pour décrire la dynamique… …   Wikipédia en Français

  • Équations de Lotka-Volterra — En mathématiques, les équations de Lotka Volterra, que l on désigne aussi sous le terme de modèle proie prédateur , sont un couple d équations différentielles non linéaires du premier ordre, et sont couramment utilisées pour décrire la dynamique… …   Wikipédia en Français

  • Volterra (disambiguation) — Volterra may refer to the following:* Volterra a town in Italy * Daniele da Volterra an Italian painter * Francesco da Volterra an Italian painter * Vito Volterra an Italian mathematician * Volterra Semiconductor an American semiconductor… …   Wikipedia

  • Equation differentielle — Équation différentielle En mathématiques, une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L ordre d une équation différentielle correspond au degré maximal de différenciation auquel une… …   Wikipédia en Français

  • Equation différentielle — Équation différentielle En mathématiques, une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L ordre d une équation différentielle correspond au degré maximal de différenciation auquel une… …   Wikipédia en Français

  • Équation différentielle du premier ordre — Équation différentielle En mathématiques, une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L ordre d une équation différentielle correspond au degré maximal de différenciation auquel une… …   Wikipédia en Français

  • Équation différentielle ordinaire — Équation différentielle En mathématiques, une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L ordre d une équation différentielle correspond au degré maximal de différenciation auquel une… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”