- Soil pH
Soil pH is the
pH of soil water. It is based on the measurement of pH, which depends on the activity ofhydrogen ion s (H+) in a solution.There are many different methods to collect soil water, all which influence the measured soil pH in one way or another (see below).The soil pH is closely linked to the concepts alkalinity and acidity (see
acid neutralizing capacity ). A neutral solution has pH 7 while an acid solution has pH less than 7 (more H+ than OH-) and a basic solution pH larger than 7 (more OH- than H+) but there is, contrary to popular belief, no exact limit to the pH range. In natural soils and surface waters buffer systems make pH levels below 3 uncommon, but not impossible. The exposure of the soil to sunlight does not usually affect the pH of the soil.(NOTE: While a basic solution always has a pH larger than 7, an alkaline solution (i.e. a solution with positive
acid neutralizing capacity ) does not necessarily have a pH larger than 7. For details on the relation between pH and ANC, seeacid neutralizing capacity )Soil pH is an important consideration for farmers and gardeners for several reasons, including the fact that many plants and
soil life forms prefer either alkaline or acidic conditions, that some diseases tend to thrive when the soil is alkaline or acidic, and that the pH can affect the availability of nutrients in the soil.Nutrient availability in relation to soil pH
The majority of food crops prefer a neutral or slightly acidic soil. Some plants however prefer more acidic (e.g., potatoes, strawberries) or alkaline (
brassica s) conditions.Acid Neutral Alkaline 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10.5 nitrogen , Nphosphorus , Ppotassium , Kcalcium , Camagnesium , Mgsulphur , Siron , Femanganese , Mnboron , Bcopper , Cuzinc , Znmolybdenum , Mo"The above table gives a guide to the availability of several nutrients at various pH values"
During the acidification process the decrease in pH results in a release of positively charged ions (cations) from the cation exchange surfaces (organic matter and clay minerals). In the short term acidification thus increases the concentration of
potassium (K),magnesium (Mg andcalcium (Ca) in soil solution. Once the cation exchange surface has become depleted of these ions, however, the concentration in soil solution can be quite low and is largely determined by the weathering rate. The weathering rate in turn is dependent on such things as mineralogy (e.g. presence of easily weathered minerals), surface area (i.e. thesoil texture ), soil moisture (i.e. how large a fraction of the mineral surface area that is wet), pH, concentration of base cations such as Ca, Mg and K as well as concentration of aluminium. The amount of plant available nutrients is a much more difficult issue than soil solution concentrations. The term plant available nutrients usually include pools other than soil solution but which are supposed to replenish soil solution pretty fast e.g. through cation exchange. One reason for including such pools is the plants capability of releasing organic acids which increase the total soil solution concentration of some cation nutrients that are important for the plant.It is thus important to realize that there exists no simple relation between soil solution concentration of Ca, Mg and K and reasonable pH-values. The reason for this is that Ca, Mg and K are base cations, i.e. cations of strong bases and strong bases are fully dissociated at the pH-ranges occurring in most natural waters. However, as the soil solution pH is dependent on mineral weathering and mineral weathering increase pH by releasing Ca, Mg and K a soil which is rich in easily weatherable minerals tends to have both a higher pH and higher soil solution concentration of Ca, Mg and K. On the other hand deposition of sulphate, nitrate and to some extent ammonia decrease pH of soil solution essentially without affecting Ca, Mg and K concentrations whereas deposition of sea salt increases Ca, Mg and K concentrations without having much of an effect on soil solution pH.
When interpreting soil solution pH values it is essential to take into account the method by which pH has been measured. Depending on whether or not the water has been equilibrated with ambient CO2 pressure or not the pH reported from the same site may be either high or low. This is simply because the carbon dioxide pressure deep down in the soil might be 10–20 times higher than the ambient pressure due to decomposition of organic material. The higher carbon dioxide pressure result in more carbonic acid and hence a lower pH. Furthermore, soil solution can be extracted from the soil in many ways, e.g. by
lysimeter s, zero-tension lysimeters, centrifugation, extraction with CaCl2, overhead shaking of soil sample with added water, etc. The CaCl2 extraction method do not give the actual soil solution pH but rather a mix between soil solution pH and what is easily available e.g. through cation exchange. Also when mixing soil samples with water and using overhead shakers (or similar) the result is a mix between actual soil solution and cation exchange, although the hope is that the extracted water will be similar to the actual soil solution in most respects. If centrifugation or pressurised lysimeters are used, care must be taken that the extracted water do not include water that is not readily available (think wilting point and crystal water). Naturally, taking a sample introduces a disturbance of the system, which can e.g. result in a change in nutrient uptake and decomposition rates (e.g. due to cutting of fine roots when placing the lysimeter).Many nutrient cations such as
zinc (Zn2+),aluminium (Al3+),iron (Fe2+),copper (Cu2+),cobalt (Co2+), andmanganese (Mn2+) are soluble and available for uptake by plants below pH 5.0, although their availability can be excessive and thus toxic in more acidic conditions. In more alkaline conditions they are less available, and symptoms of nutrient deficiency may result, including thin plant stems,yellowing (chlorosis ) or mottling of leaves, and slow or stunted growth.pH levels also affect the complex interactions among soil chemicals. Phosphorus (P) for example requires a pH between 6.0 and 7.0 and becomes chemically immobile outside this range, forming insoluble compounds with iron (Fe) and aluminium (Al) in acid soils and with calcium (Ca) in calcareous soils.
How is acidic soil formed
To understand how acid soils are formed, take a simple walk through a woodland. Rainfall filters through trees and into the ground, where it dissolves limestone sediment and other alkaline minerals that help neutralize soil acidity. The woodland floor is carpeted in needles of conifers, leaves of hardwood trees, and other dead plant matter, all of which increase soil acidity as they decompose. Unless this woodland is on top of a huge deposit of gypsum or other alkaline minerals, the soil will tend to be acid.
Soils and acidity
Under conditions in which rainfall exceeds evapotranspiration (leaching) during most of the year, the basic soil cations (Ca, Mg, K) are gradually depleted and replaced with cations held in colloidal soil reserves, leading to soil acidity. Clay soils often contain Fe and hydroxy Al, which affect the retention and availability of fertilizer
cation s andanion s in acidic soils.Soil acidification may also occur by addition of hydrogen, due to decomposition of organic matter, acid-forming fertilizers, and exchange of basic cations for H+ by the roots.
Soil acidity is reduced by
volatilization anddenitrification of nitrogen. Under flooded conditions, the soil pH value increases. In addition, the followingnitrate fertilizers --calcium nitrate ,magnesium nitrate ,potassium nitrate andsodium nitrate -- also increase the soil pH value.Some alkaline soils have Calcium in the form of limestone that is not chemically available to plants. In this case
sulphuric acid orSulphur may be added to reclaim the soil.Factors affecting soil pH
The pH value of a soil is influenced by the kinds of parent materials from which the soil was formed. Soils developed from basic rocks generally have higher pH values than those formed from acid rocks.
Rainfall also affects soil pH. Water passing through the soil leaches basic nutrients such as calcium and magnesium from the soil. They are replaced by acidic elements such as aluminum and iron. For this reason, soils formed under high rainfall conditions are more acidic than those formed under arid (dry) conditions.
Human distractions like pollution alter the pH of soil. Researches have also revealed that soil pH is affected by the vehicular and ongoing traffic. This largely hampers the soil pH and in turn the primary productivity by compacting the soil and decreasing its friability.
Application of fertilizers containing ammonium or urea speeds up the rate at which acidity develops. The decomposition of organic matter also adds to soil acidity.
Soil life and pH
A pH level of around 6.3-6.8 is also the optimum range preferred by most soil bacteria, although
fungi , molds, and anaerobic bacteria have a broader tolerance and tend to multiply at lower pH values. Therefore, more acidic soils tend to be susceptible to souring and putrefaction, rather than undergoing the sweet decay processes associated with the decay of organic matter, which immeasurably benefit the soil. These processes also prefer near-neutral conditions.pH and plant diseases
Many plant diseases are caused or exacerbated by extremes of pH, sometimes because this makes essential nutrients unavailable to crops or because the soil itself is unhealthy (see above). For example,
chlorosis of leaf vegetables and potato scab occur in overly alkaline conditions, and acidic soils can cause clubroot in brassicas.Determining pH
A map of the pH level is a mosaic, varying according to soil crumb structure, on the surface of colloids, and at microsites. The pH also exhibits vertical gradients, tending to be more acidic in surface mulches and alkaline where evaporation, wormcasts, and capillary action draw bases up to the soil surface. It also varies on a macro level depending on factors such as slope, rocks, and vegetation type. Therefore the pH should be measured regularly and at various points within the land in question.
Methods of determining pH include:
*"Observation of predominant flora". Calcifuge plants (those that prefer an acidic soil) include "
Erica ", "Rhododendron " and nearly all otherEricaceae species, many "Betula" (birch ), "Digitalis" (foxglove s),gorse , andScots Pine . Calcicole (lime loving) plants include "Fraxinus" (Ash),Honeysuckle ("Lonicera"), Buddleia, "Cornus" spp (dogwood s),Lilac ("Syringa") and "Clematis " spp.
*"Observation of symptoms" that might indicate acidic or alkaline conditions, such as occurrence of the plant diseases mentioned above or salinisation of alkaline soils. The house hydrangea ("Hydrangea macrophylla") produces pink flowers at pH values of 6.8 or higher, and blue flowers at pH 6.0 or below.
*"Use of an inexpensive pH testing kit" based onbarium sulfate in powdered form, where in a small sample of soil is mixed with water which changes colour according to the acidity/alkalinity.
*"Use oflitmus paper ". A small sample of soil is mixed with distilled water, into which a strip oflitmus paper is inserted. If the soil is acidic the paper turns red, if alkaline, blue.
*"Use of a commercially available electronicpH meter ", in which a rod is inserted into moistened soil and measures the concentration of hydrogen ions.Altering soil pH
The aim when attempting to adjust soil acidity is not so much to neutralise the pH as to replace lost cation nutrients, particularly calcium. This can be achieved by adding
limestone to the soil, which is available in various forms:
*Agricultural lime (ground limestone or chalk). These are natural forms of calcium carbonate which are extracted in the UK from areas such as theMendip s andSalisbury Plain . This is probably the cheapest form of lime for gardening and agricultural use and can be applied at any time of the year. These forms are slow reacting, thus their effect on soil fertility and plant growth is steady and long lasting. Ground lime should be applied to clay and heavy soils at a rate of about 500 to 1,000 g/m² (1 to 2 lb/yd² or 4,500 to 9,000 lb/ac).
* "Quicklime and slaked lime". The former is produced by burning rock limestone in kilns. It is highly caustic and cannot be applied directly to the soil. Quicklime reacts with water to produce slaked, or hydrated, lime, thus quicklime is spread around agricultural land in heaps to absorb rain and atmospheric moisture and form slaked lime, which is then spread on the soil. Quicklime should be applied to heavy clays at a rate of about 400 to 500 g/m² (0.75 to 1 lb/yd² or 3,600 to 4,500 lb/ac), hydrated lime at 250 to 500 g/m² (0.5 to 1 lb/yd²). However, quicklime and hydrated lime are very fast acting and are not suitable for inclusion in an organic system. Their use is prohibited under the standards of both TheSoil Association and theHenry Doubleday Research Association .
* "Calcium sulfate", also known asgypsum can not be used to amend soil acidity. It is a common myth that gypsum effects soil acidity. [cite journal
last = Smith
first = C. J.
coauthors = Peoples, M. B. Keerthisinghe, G. James, T. R.
title = Effect of surface applications of lime, gypsum and phosphogypsum on the alleviating of surface and subsurface acidity in a soil under pasture
journal = Australian Journal of Soil Research
volume = 32issue = 5
year = 1994
pages = 995–1008
id = ISSN 0004-9573
doi = 10.1071/SR9940995]The pH of an alkaline soil is lowered by adding
sulphur ,iron sulfate oraluminium sulfate , although these tend to be expensive, and the effects short term.Urea ,urea phosphate ,ammonium nitrate ,ammonium phosphate s,ammonium sulfate andmonopotassium phosphate also lower soil pH.References
See also
*
Acid sulfate soil
*Cation Exchange Capacity
*Organic gardening
*Soil conservation
Wikimedia Foundation. 2010.