Ocean observations

Ocean observations

The following are considered essential ocean climate variables by the OOPC[1][clarification needed] that are currently feasible with current observational systems.

Contents

Ocean climate variables

Atmosphere surface

Air Temperature
Precipitation (meteorology)
evaporation
Air Pressure, sea level pressure (SLP)
Surface radiative fluxes
Surface thermodynamic fluxes
Wind speed and direction
Surface wind stress
Water vapor

Ocean surface

Sea surface temperature (SST)
Sea surface salinity (SSS)
Sea level
Sea state
Sea ice
Ocean current
Ocean color (for biological activity)
Carbon dioxide partial pressure (pCO2)

Ocean subsurface

Temperature
Salinity
Ocean current
Nutrients
Carbon
Ocean tracers
Phytoplankton

Ocean observation sources

Satellite

There is a composite network of satellites that generate observations (http://ioc3.unesco.org/oopc/obs/surface_sat.php). These include:

Type Variables Observed Responsible Organizations
Infrared (IR) SST, sea ice CEOS, IGOS, CGMS
AMSR-class microwave SST, wind speed, sea ice CEOS, IGOS, CGMS
Surface vector wind (two wide-swath scatterometers desired) surface vector wind, sea ice CEOS, IGOS, CGMS
Ocean color chlorophyll concentration (biomass of phytoplankton) IOCCG
high-precision altimetry sea-level anomaly from steady state CEOS, IGOS, CGMS
low-precision altimetry sea level CEOS, IGOS, CGMS
Synthetic aperture radar sea ice, sea state CEOS, IGOS, CGMS

In situ

There is a composite network of in situ observations (http://ioc3.unesco.org/oopc/obs/surface_insitu.php). These include:

Type Variables Observed Responsible Organizations
Global surface drifting buoy array with 5 degree resolution (1250 total) SST, SLP, Current (based on position change) JCOMM Data Buoy Cooperation Panel (DBCP)
Global tropical moored buoy network (about 120 moorings) typically SST and surface vector wind, but can also include SLP, current, air-sea flux variables JCOMM DBCP Tropical Moored Buoy Implementation Panel (TIP)
Volunteer Observing Ship (VOS) fleet all feasible surface ECVs JCOMM Ship Observations Team (SOT)
VOSClim all feasible surface ECVs plus extensive ship metadata JCOMM Ship Observations Team (SOT)
Global referencing mooring network (29 moorings) all feasible surface ECVs OceanSITES
GLOSS core sea-level network, plus regional/national networks sea level JCOMM GLOSS
Carbon VOS pCO2, SST, SSS IOCCP
Sea ice buoys sea ice JCOMM DBCP IABP and IPAB

Subsurface

There is a composite network of subsurface observations (http://ioc3.unesco.org/oopc/obs/subsurface.php). These include:

Type Variables Observed Responsible Organizations
Repeat XBT (Expendable bathythermograph) line network (41 lines) Temperature JCOMM Ship Observations Team (SOT)
Global tropical moored buoy network (~120 moorings) Temperature, Salinity, current, other feasible autonomously observable ECVs JCOMM DBCP Tropical Moored Buoy Implementation Panel (TIP)
Reference mooring network (29 moorings) all autonomously observable ECVs OceanSITES
Sustained and repeated ship-based hydrography network All feasible ECVs, including those that depend on obtaining water samples IOCCP, CLIVAR, other national efforts
Argo (oceanography) network temperature, salinity, current Argo
Critical current and transport monitoring temperature, heat, freshwater, carbon transports, mass CLIVAR, IOCCP , OceanSITES
Regional and global synthesis programmes inferred currents, transports gridded fields of all ECVs GODAE, CLIVAR, other national efforts

Accuracy of measurements

The quality of in situ measurements is non-uniform across space, time and platforms. Different platforms employ a large variety of sensors, which operate in a wide range of often hostile environments and use different measurement protocols. Occasionally, buoys are left unattended for extended periods of time, while ships may involve a certain amount of the human-related impacts in data collection and transmission [2]. Therefore, quality control is necessary before in situ data can be further used in scientific research or other applications. This is an example of quality control and monitoring of sea surface temperatures measured by ships and buoys, the iQuam system developed at NOAA/NESDIS/STAR: http://www.star.nesdis.noaa.gov/sod/sst/iquam, where statistics show the quality of in situ measurements of sea surface temperatures.

Historical data available

A variety of historical data sets is available here: http://www.whoi.edu/page.do?pid=7140

This site includes links to the ARGO Float Data, The Data Library and Archives (DLA), the Falmouth Monthly Climate Reports, Martha's Vineyard Coastal Observatory, the Multibeam Archive, the Seafloor Data and Observation Visualization Environment (SeaDOVE): A Web-served GIS Database of Multi-scalar Seafloor Data, Seafloor Sediments Data Collection, the Upper Ocean Mooring Data Archive, the U.S. GLOBEC Data System, U.S. JGOFS Data System, and the WHOI Ship Data-Grabber System.

There are a variety of data sets in a data library listed at Columbia University:[3]

This library includes:

  • LEVITUS94 is the World Ocean Atlas as of 1994, an atlas of objectively analyzed fields of major ocean parameters at the annual, seasonal, and monthly time scales. It is superseded by WOA98.
  • NOAA NODC WOA98 is the World Ocean Atlas as of 1998, an atlas of objectively analyzed fields of major ocean parameters at monthly, seasonal, and annual time scales. Superseded by WOA01.
  • NOAA NODC WOA01 is the World Ocean Atlas 2001, an atlas of objectively analyzed fields of major ocean parameters at monthly, seasonal, and annual time scales. Replaced by WOA05.
  • NOAA NODC WOA05 is the World Ocean Atlas 2005, an atlas of objectively analyzed fields of major ocean parameters at monthly, seasonal, and annual time scales.

In situ observations spanning from the early 1700s to present are available from the International Comprehensive Ocean Atmosphere Data Set (ICOADS). Further information can be found here: http://icoads.noaa.gov

This data set includes observations of a number of the surface ocean and atmospheric variables from ships, moored and drifting buoys and C-MAN stations.

Future developments

Areas requiring research and development[4]

  • Satellite observations with higher resolution and accuracy and more spectral bands from geostationary satellites
  • improved capability for ocean color observations in coastal and turbid waters
  • improved interpretation of sea-ice data from satellites
  • satellite measurement of salinity
  • Observing system evaluation and design, including improvements in air-sea flux parameterizations.
  • Improvements in ocean platforms, including increased capabilities for Argo floats
  • improved glider technology and mooring technology.
  • New development in ocean sensors and systems, including improved bio-fouling protection, autonomous water sampling systems, optical and acoustic systems, airborne variable sensors, and two-way, low-cost, low-power telecommunications.
  • New and improved capability to measure biogeochemical variables, nutrients, and dissolved oxygen and carbon dioxide, as well as to identify organisms.
  • Improved instruments, including near-surface current meters, in-water radiometers, sensors for air-sea interface variables and turbulent fluxes, and VOS sensor systems.

The future of oceanic observation systems:

  • Guided unmanned underwater vehicles[5]

Organizations

Notes

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Ocean reanalysis — is an method of combining historical ocean observations with a general ocean model (typically a computational model) driven by historical estimates of surface winds, heat, and freshwater, by way of a data assimilation algorithm to reconstruct… …   Wikipedia

  • Observations and Measurements — (O M) is an International Standard [1] which defines a conceptual schema encoding for observations, and for features involved in sampling when making observations. While the O M standard was developed in the context of geographic information… …   Wikipedia

  • Ocean dynamics — define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean dynamics has… …   Wikipedia

  • Ocean Surface Topography Mission — OSTM/Jason 2 Artist s interpretation of the Jason 2 satellite Operator NASA, CNES, NOAA, EUMETSAT Mission type Earth orbiter …   Wikipedia

  • Ocean acoustic tomography — The western North Atlantic showing the locations of two experiments that employed ocean acoustic tomography. AMODE, the Acoustic Mid Ocean Dynamics Experiment (1990 1), was designed to study ocean dynamics in an area away from the Gulf Stream,… …   Wikipedia

  • Ocean surface topography — TOPEX/Poseidon was the first space mission that allowed scientists to map ocean topography with sufficient accuracy to study the large scale current systems of the world s ocean. Although this image was constructed from only 10 days of… …   Wikipedia

  • Ocean exploration — is a term of biography describing the exploration of the ocean. It is also the period when people explored the ocean fishies. Notable explorers include: the Greeks, the Egyptians, the Polynesians, the Phoenicians, Phytheas, Herodotus, the Vikings …   Wikipedia

  • Ocean — For other uses, see Ocean (disambiguation). Maps exhibiting the world s oceanic waters. A continuou …   Wikipedia

  • Ocean thermal energy conversion — Temperature differences between the surface and 1000m depth in the oceans Ocean Thermal Energy Conversion (OTEC) uses the difference between cooler deep and warmer shallow or surface ocean waters to run a heat engine and produce useful work,… …   Wikipedia

  • Ocean current — This article is about ocean currents. For other uses, see Current (disambiguation). The ocean currents. Distinctive white lines trace the flow of surface currents around the world. An ocean cur …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”