Temporal range: 318–0 Ma
Pennsylvanian – Recent
Top left to bottom right: female golden stag beetle (Lamprima aurata), rhinoceros beetle (Megasoma Sp.), a species of Amblytelus, cowboy beetle (Chondropyga dorsalis), and a long nose weevil (Rhinotia hemistictus).
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Subclass: Pterygota
Infraclass: Neoptera
Superorder: Endopterygota
Order: Coleoptera
Linnaeus, 1758

See subgroups of the order Coleoptera

Coleoptera (play /klˈɒptərə/) is an order of insects commonly called beetles. The word "coleoptera" is from the Greek κολεός, koleos, "sheath"; and πτερόν, pteron, "wing", thus "sheathed wing". Coleoptera contains more species than any other order, constituting almost 25% of all known life-forms.[1] About 40% of all described insect species are beetles (about 400,000 species[2]), and new species are discovered frequently. Some estimates put the total number of species, described and undescribed, at as high as 100 million, but 1 million is a more accepted figure.[3] The largest taxonomic family, the Curculionidae (the weevils or snout beetles), also belongs to this order.

The diversity of beetles is very wide-ranging. They are found in almost all types of habitats, but are not known to occur in the sea or in the polar regions. They interact with their ecosystems in several ways. They often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are prey of various animals including birds and mammals. Certain species are agricultural pests, such as the Colorado potato beetle Leptinotarsa decemlineata, the boll weevil Anthonomus grandis, the red flour beetle Tribolium castaneum, and the mungbean or cowpea beetle Callosobruchus maculatus, while other species of beetles are important controls of agricultural pests. For example, beetles in the family Coccinellidae ("ladybirds" or "ladybugs") consume aphids, scale insects, thrips, and other plant-sucking insects that damage crops.

Species in the order Coleoptera are generally characterized by a particularly hard exoskeleton and hard forewings (elytra, singular elytron). These elytra distinguish beetles from most other insect species, except for a few species of Hemiptera. The beetle's exoskeleton is made up of numerous plates called sclerites, separated by thin sutures. This design creates the armored defenses of the beetle while maintaining flexibility. The general anatomy of a beetle is quite uniform, although specific organs and appendages may vary greatly in appearance and function between the many families in the order. Like all insects, beetles' bodies are divided into three sections: the head, the thorax, and the abdomen. Coleopteran internal morphology is similar to other insects, although there are several examples of novelty. Such examples include species of water beetle who use air bubbles in order to dive under the water, and can remain submerged thanks to passive diffusion allowing oxygen to transfer from the water into the bubble.

Beetles are endopterygotes, which means that they undergo complete metamorphosis, a biological process by which an animal physically develops after birth or hatching, undergoing a series of conspicuous and relatively abrupt change in the its body structure. Coleopteran species have an extremely intricate behavior when mating, using such methods as pheromones for communication to locate potential mates. Males may fight for females using very elongated mandibles, causing a strong divergence between males and females in sexual dimorphism.



Coleoptera comes from the Greek koleopteros, literally "sheath-wing", from koleos meaning "sheath", and pteron, meaning "wing". The name was given to the group by Aristotle for their elytra, hardened shield-like forewings. The English name "beetle" comes from the Old English word bitela, literally meaning small biter, deriving from the word bitel, which means biting.[4] In addition to names including the word "beetle", individual species of Coleoptera have a variety of common names, including fireflies, June bugs, ladybugs and weevils.[1]

Distribution and diversity

Beetles are one of the largest orders of insects, with 350,000–400,000 species in four suborders (Adephaga, Archostemata, Myxophaga, and Polyphaga), making up about 40% of all insect species described. Even though classification at the family level is a bit unstable, there are about 500 recognized families and subfamilies.[1][5] One of the first proposed estimates of the total number of beetle species on the planet, based on field data rather than on catalog numbers. The technique used for his original estimate, possibly as many as 12,000,000 species, was criticized, and was later revised, with estimates of 850,000–4,000,000 species proposed. Some 70–95% of all beetle species, depending on the estimate, remain undescribed. The beetle fauna is not equally well known in all parts of the world. For example, the known beetle diversity of Australia is estimated at 23,000 species in 3265 genera and 121 families. This is slightly lower than reported for North America, a land mass of similar size with 25,160 species in 3526 genera and 129 families. While other predictions show there could be as many as 28,000 species in North America, including those currently undescribed, a realistic estimate of the little-studied Australian beetle fauna's true diversity could vary from 80,000 to 100,000.[6]

Patterns of beetle diversity can be used to illustrate factors that have led to the success of the group as a whole. Based on estimates for all 165 families, more than 358,000 species of beetles have been described and are considered valid. Most species (about 62%) are in six extremely diverse families, each with at least 20,000 described species: Curculionidae, Staphylinidae, Chrysomelidae, Carabidae, Scarabaeidae, and Cerambycidae. The smaller families account for 22% of the total species - 127 families with fewer than 1000 described species and 29 families with 1000–6000 described species. So, the success of beetles as a whole is driven not only by several extremely diverse lineages, but also by a high number of moderately successful lineages. The patterns seen today indicate that beetles went through a massive adaptive radiation early in their evolutionary history, with many of the resulting lineages flourishing through hundreds of millions of years to the present. The adaptive radiation of angiosperms helped drive the diversification of beetles, as four of the six megadiverse families of beetles are primarily angiosperm-feeders:Curculionidae, Chrysomelidae, Scarabaeidae, and Cerambycidae. However, even without the phytophagous groups, lineages of predators, scavengers, and fungivores are tremendously successful.[6] Coleoptera are found in nearly all natural habitats, including freshwater and marine habitats, everywhere there is vegetative foliage, from trees and their bark to flowers, leaves, and underground near roots- even inside plants in galls, in every plant tissue including dead or decaying ones.[7]

External morphology

The morphology of a beetle, with a fiddler beetle as an example species
A beetle, just before takeoff. The elytra and unfolding wings can clearly be seen.

Beetles are generally characterized by a particularly hard exoskeleton and hard forewings (elytra). The beetle's exoskeleton is made up of numerous plates called sclerites, separated by thin sutures. This design provides armored defenses while maintaining flexibility. The general anatomy of a beetle is quite uniform, although specific organs and appendages may vary greatly in appearance and function between the many families in the order. Like all insects, beetles' bodies are divided into three sections: the head, the thorax, and the abdomen.[1]

Scarabaeus viettei (syn. Madateuchus viettei, Scarabaeidae) showing a "shovel head" adaptation.
Head of Cephalota circumdata, showing the compound eyes and mouthparts


The head, having mouthparts projecting forward or sometimes downturned, is usually heavily sclerotized and varies in size.[5] The eyes are compound and may display remarkable adaptability, as in the case of whirligig beetles (family Gyrinidae), where they are split to allow a view both above and below the waterline. Other species also have divided eyes – some longhorn beetles (family Cerambycidae) and weevils – while many have eyes that are notched to some degree. A few beetle genera also possess ocelli, which are small, simple eyes usually situated farther back on the head (on the vertex).

Beetles' antennae are primarily organs of smell, but may also be used to feel out a beetle's environment physically. They may also be used in some families during mating, or among a few beetles for defence. Antennae vary greatly in form within the Coleoptera, but are often similar within any given family. In some cases, males and females of the same species will have different antennal forms. Antennae may be clavate (flabellate and lamellate are sub-forms of clavate, or clubbed antennae), filiform, geniculate, moniliform, pectinate, or serrate.

Beetles have mouthparts similar to those of grasshoppers. Of these parts, the most commonly known are probably the mandibles, which appear as large pincers on the front of some beetles. The mandibles are a pair of hard, often tooth-like structures that move horizontally to grasp, crush, or cut food or enemies (see defence, below). Two pairs of finger-like appendages are found around the mouth in most beetles, serving to move food into the mouth. These are the maxillary and labial palpi. In many species the mandibles are sexually dimorphic, with the males' enlarged enormously compared with those of females of the same species.[5]


The thorax is segmented into the two discernible parts, the pro- and pterathorax. The pterathorax is the fused meso- and metathorax, which are commonly separate in other insect species, although flexibly articulate from the prothorax. When viewed from below, the thorax is that part from which all three pairs of legs and both pairs of wings arise. The abdomen is everything posterior to the thorax.[1] When viewed from above, most beetles appear to have three clear sections, but this is deceptive: on the beetle's upper surface, the middle "section" is a hard plate called the pronotum, which is only the front part of the thorax; the back part of the thorax is concealed by the beetle's wings. This further segmentation is usually best seen on the abdomen.

Acilius sulcatus, a diving beetle showing hind legs adapted for life in water


The multi-segmented legs end in two to five small segments called tarsi. Like many other insect orders beetles bear claws, usually one pair, on the end of the last tarsal segment of each leg. While most beetles use their legs for walking, legs may be variously modified and adapted for other uses. Among aquatic families – Dytiscidae, Haliplidae, many species of Hydrophilidae and others – the legs, most notably the last pair, are modified for swimming and often bear rows of long hairs to aid this purpose. Other beetles have fossorial legs that are widened and often spined for digging. Species with such adaptations are found among the scarabs, ground beetles, and clown beetles (family Histeridae). The hind legs of some beetles, such as flea beetles (within Chrysomelidae) and flea weevils (within Curculionidae), are enlarged and designed for jumping.


The elytra are connected to the pterathorax, so named because it is where the wings are connected (pteron meaning "wing" in Greek).[1] The elytra are not used for flight, but tend to cover the hind part of the body and protect the second pair of wings (alae). They must be raised in order to move the hind flight wings. A beetle's flight wings are crossed with veins and are folded after landing, often along these veins, and stored below the elytra. In some beetles, the ability to fly has been lost. These include some ground beetles (family Carabidae) and some "true weevils" (family Curculionidae), but also desert- and cave-dwelling species of other families. Many have the two elytra fused together, forming a solid shield over the abdomen. In a few families, both the ability to fly and the elytra have been lost, with the best known example being the glow-worms of the family Phengodidae, in which the females are larviform throughout their lives.


The abdomen is the section behind the metathorax, made up of a series of rings, each with a hole for breathing and respiration, called a spiracle; composing three different segmented sclerites: the tergum, pleura, and the sternum. The tergum in almost all species is membranous, or usually soft and concealed by the wings and elytra when not in flight. The pleura (singular: pleuron) are usually small or hidden in some species, with each pleuron having a single spiracle. The sternum is the most widely visible part of the abdomen, being a more or less scelortized segment. The abdomen itself does not have any appendages, however some species (for example,, Mordellidae) have articulating sternal lobes.[8]

Internal morphology

A diagram showing the general internal anatomy of beetles

Digestive system

The digestive system of beetles is primarily based on plants which they for the most part feed upon, with mostly the anterior midgut performing digestion, although in predatory species (for example Carabidae) most digestion occurs in the crop by means of midgut enzymes. In Elateridae species, the predatory larvae defecate enzymes on their prey, with digestion being extraorally.[1] The alimentary canal basically consists of a short narrow pharynx, a widened expansion, the crop and a poorly developed gizzard. After there is a midgut, that varies in dimensions between species, with a large amount of cecum, with a hindgut, with varying lengths. There are typically four to six Malpighian tubules.[5]

Nervous system

The nervous system in beetles contains all the types found in insects, varying between different species. With three thoracic and seven or eight abdominal ganglia can be distinguished to that in which all the thoracic and abdominal ganglia are fused to form a composite structure.[1]

Respiratory system

Oxygen is obtained via a tracheal system. Air enters a series of tubes along the body through openings called spiracles, and is then taken into increasingly finer fibers.[1] This bubble may be held under the elytra or it may be trapped against the body using specialized hairs. The bubble usually covers one or more spiracles so the insect can breathe air from the bubble while submerged. An air bubble provides an insect with only a short-term supply of oxygen, but thanks to its unique physical properties, oxygen will diffuse into the bubble and displacing the nitrogen, called passive diffusion, however the volume of the bubble eventually diminishes and the beetle will have to return to the surface.[9]

Circulatory system

Pumping movements of the body force the air through the system. Beetles have hemolymph instead of blood like other insect species, the open circulatory system of the beetle is driven by a tube-like heart attached to the top inside of the thorax. Some species of diving beetles (Dytiscidae) carry a bubble of air with them whenever they dive beneath the water surface.[1]

Specialized organs

Different glands specialize for different pheromones produced for finding mates. Pheromones from species of Rutelinea are produced from epithelial cells lining the inner surface of the apical abdominal segments or amino acid based pheromones of Melolonthinae from eversible glands on the abdominal apex. Other species produce different types of pheromones. Dermestids produce esters, and species of Elateridae produce fatty-acid-derived aldehydes and acetates.[1] For means of finding a mate also, fireflies (Lampyridae) utilized modified fat body cells with transparent surfaces backed with reflective uric acid crystals to biosynthetically produce light, or bioluminescence. The light produce is highly efficient, as it is produced by oxidation of luciferin by the enzymes luciferase in the presence of ATP (adenosine triphospate) and oxygen, producing oxyluciferin, carbon dioxide, and light.[1]

A notable number of species have developed special glands that produce chemicals for deterring predators (see Defense and predation). The Ground beetle's (of Carabidae) defensive glands, located at the posterior, produce a variety of hydrocarbons, aldehydes, phenols, quinones, esters, and acids released from an opening at the end of the abdomen. African carabid beetles (for example, Anthia and Thermophilium) employ the same chemicals as ants: formic acid.[10] Bombardier beetles have well-developed, like other carabid beetles, pygidial glands that empty from the lateral edges of the intersegment membranes between the seventh and eighth abdominal segments. The gland is made of two containing chambers. The first holds hydroquinones and hydrogen peroxide, with the second holding just hydrogen peroxide plus catalases. These chemicals mix and result in an explosive ejection, forming temperatures of around 100 °C (212 °F), with the breakdown of hydroquinone to H2 + O2 + quinone, with the O2 propelling the excretion.[1]

Tympanal organs or hearing organs, which is a membrane (tympanum) stretched across a frame backed by an air sac and associated sensory neurons, are described in two families.[11] Several species of the genus Cicindela (Cicindelidae) have ears on the dorsal surface of the first abdominal segment beneath the wing; two tribes in the subfamily Dynastinae (Scarabaeidae) have ears just beneath the pronotal shield or neck membrane. The ears of both families are to ultrasonic frequencies, with strong evidence that they function to detect the presence of bats via there ultrasonic echolocation. Even though beetles constitute a large order and live in a variety of niches, examples of hearing is surprisingly lacking in species, though it is likely that most are just undiscovered.[1]

Reproduction and development

Beetles are members of Endopterygota, which means like most other insects under complete metamorphosis, which consists of four main stages: the egg, the larva, the pupa, and the imago or adult. The larvae are commonly called grubs and the pupa are called cocoons.


Punctate flower chafers (Neorrhina punctata, Scarabaeidae) mating

Beetles may display extremely intricate behavior when mating. Pheromone communication is likely to be important in the location of a mate. Different species use different chemicals for their pheromones. Some scarab beetles (for example,, Rutelinae) utilize pheromones derived from fatty acid synthesis, while other scarab beetles use amino acids and terpenoid compounds (for example,, Melolonthinae). Another way species of Coleoptera find mates is the use of biosynthesized light, or bioluminescence. This special form of a mating call is confined to fireflies (Lampyridae) by the use of abdominal light producing organs. The males and females engage in complex dialogue before mating, identifying different species by differences in duration, flight patterns, composition, and intensity.[1]

Before mating male and females may engage in various forms of behavior. Males and females may stridulate, or vibrate the object they are on. In some species (for example,, Meloidae) the male climbs onto the dorsum of the female and stroke his antennae on her head, palps and antennae. In the genus Eupompha of said family, the males draws the antennae along the longitudinal vertex on the male. They may not mate at all if they do not perform the precopulatory ritual.[1]

Conflict can play a part in the mating rituals of species such as burying beetles (genus Nicrophorus) where conflicts between males and females rage until only one of each is left, thus ensuring reproduction by the strongest and fittest. Many male beetles are territorial and will fiercely defend their small patch of territory from intruding males. In such species, the males may often have horns on the head and/or thorax, making their overall body lengths greater than those of the females, unlike most insects. Pairing is generally short but in some cases will last for several hours. During pairing sperm cells are transferred to the female to fertilize the egg.[5]

Life cycle

The life cycle of the stag beetle, including the 3 instars.


A single female may lay from several dozen to several thousand eggs during her lifetime. Eggs are usually laid according to the substrate the larva will feed on upon hatching. Among others, they can be laid loose in the substrate (for example, flour beetle), laid in clumps on leaves (for example, Colorado potato beetle), or individually attached (for example, mungbean beetle and other seed borers) or buried in the medium (for example, carrot weevil).

Parental care varies between species, ranging from the simple laying of eggs under a leaf to certain scarab beetles, which construct underground structures complete with a supply of dung to house and feed their young.[1] Other beetles are leaf rollers, biting sections of leaves to cause them to curl inwards, then laying their eggs, thus protected, inside.[1]


A scarabaeiform larva known as a Curl grub.

The larva is usually the principal feeding stage of the beetle life cycle. Larvae tend to feed voraciously once they emerge from their eggs. Some feed externally on plants, such as those of certain leaf beetles, while others feed within their food sources. Examples of internal feeders are most Buprestidae and longhorn beetles. The larvae of many beetle families are predatory like the adults (ground beetles, ladybirds, rove beetles). The larval period varies between species but can be as long as several years. The larva are highly varied amongst species, with a well-developed and sclerotized head and have distinguishable thoracic and abdominal segments (usually the tenth, though sometimes the eight or ninth).[5]

Beetle larvae can be differentiated from other insect larvae by their hardened, often darkened head, the presence of chewing mouthparts, and spiracles along the sides of the body. Like adult beetles, the larvae are varied in appearance, particularly between beetle families. Beetles whose larvae are somewhat flattened and are highly mobile are the ground beetles, some rove beetles, and others; their larvae are described as campodeiform. Some beetle larvae resemble hardened worms with dark head capsules and minute legs. These are elateriform larvae, and are found in the click beetle (Elateridae) and darkling beetle (Tenebrionidae) families. Some elateriform larvae of click beetles are known as wireworms. Beetles in the families of the Scarabaeoidea have short, thick larvae described as scarabaeiform, but more commonly known as grubs.

All beetle larvae go through several instars, which are the developmental stages between each moult. In many species the larvae simply increase in size with each successive instar as more food is consumed. In some cases, however, more dramatic changes occur. Among certain beetle families or genera, particularly those that exhibit parasitic lifestyles, the first instar (the planidium) is highly mobile in order to search out a host, while the following instars are more sedentary and remain on or within their host. This is known as hypermetamorphosis; examples include the blister beetles (family Meloidae) and some rove beetles, particularly those of the genus Aleochara.


As with all endopterygotes, beetle larvae pupate, and from this pupa emerges a fully formed, sexually mature adult beetle, or imago. Adults have an extremely variable lifespan, from weeks to years, depending on the species. In some species the pupa may go through all four forms during its development, called hypermetamorphosis (for example,, Meloidae). Pupae always have no mandibles, or adecticous. In most, the appendages are not attached to the pupae, or they are exarate; with most being obtect in form.[5]



Photinus pyralis, firefly, in flight

Aquatic beetles use several techniques for retaining air beneath the water's surface. Beetles of the family Dytiscidae hold air between the abdomen and the elytra when diving. Hydrophilidae have hairs on their under surface that retain a layer of air against their bodies. Adult crawling water beetles use both their elytra and their hind coxae (the basal segment of the back legs) in air retention,[12] while whirligig beetles simply carry an air bubble down with them whenever they dive.

The elytra allows beetles and weevils to both fly and move through confined spaces. Doings so by folding the delicate wings under the elytra while not flying, and folding their wings out just before take off. The unfolding and folding of the wings is operated by muscles attached to the wing base; as long as the tension on the radial and cubital veins remains, the wings remain straight. In day-flying species (for example, Buprestidae, Scarabaeidae), flight does not include large amounts of lifting of the elytra, having the metathorac wings extended under the lateral elytra margins.[1]


Beetles have a variety of ways to communicate. Some of which include a sophisticated chemical language through the use of pheromones. From the host tree, the mountain pine beetle have many forms of communication. They can emit both an aggregative pheromone and an anti-aggregative pheramone. The aggregative pheromone attracts other beetles to the tree, and the anti-aggregative pheromone neutralizes the aggregative pheromone. This helps to avoid the harmful effects of having too many beetles on one tree competing for resources. The mountain pine beetle can also stridulate to communicate, or rub body parts together to create sound, having a “scraper” on their abdomen that they rub against a grooved surface on the underside of their left wing cover to create a sound that is not audible to humans. Once the female beetles have arrived on a suitable pine tree host, they begin to stridulate and produce aggregative pheromones to attract other unmated males and females. New females arrive and do the same as they land and bore into the tree. As the males arrive, they enter the galleries that the females have tunneled, and begin to stridulate to let the females know they have arrived, and to also warn others that the female in that gallery is taken. At this point, the female stops producing aggregative pheromones and starts producing anti-aggregative pheromone to deter more beetles from coming.[13]

Since species of Coleoptera use environmental stimuli to communicate, they are affected by the climate. Microclimates, such as wind or temperature, can disturb the use of pheromones; wind would blow the pheromones while they ravel through the air. Stridulating can be interrupted when the stimulus is vibrated by something else.[13]

Parental care

A dung beetle rolling dung

Among insect, parental care is very uncommon, only found in a few species. Some beetles also display this unique social behavior.[1] One theory states why there is parental care is that it is necessary for the survival of the larvae, protecting them from adverse environmental conditions and predators. One species, a rover beetle (Bledius spectabilis) displays both causes for parental care: physical and biotic environmental factors. Said species lives in salt marshes, so the eggs and/or larvae are endangered by the rising tide. The maternal beetle will patrol the eggs and larva and apply the appropriate burrowing behavior to keep them from flooding and from asphyxiating. Another advantage is that the mother protects the eggs and larvae from the predatory carabid beetles species Dicheirotrichus gustavi and from the parasitoid wasp species Barycnemis blediator. Up to 15% of larvae are killed by this parasitoid wasp, being only protected by maternal beetles in their dens.[14]

Some species of dung beetle also display a form of parental care. Dung beetles collect animal feces, or "dung", from which their name is derived, and roll it into a ball, sometimes being up to 50 times their own weight; albeit sometimes it is also used to store food. Usually it is the male that rolls the ball, with the female hitch-hiking or simply following behind. In some cases the male and the female roll together. When a spot with soft soil is found, they stop and bury the dung ball. They will then mate underground. After the mating, both or one of them will prepare the brooding ball. When the ball is finished, the female lays eggs inside it, a form of mass provisioning. Some species do not leave after this stage, but remain to safeguard their offspring.[15]

Mylabris pustulata (Meloidae) feeding on the petals of Ipomoea carnea


Besides being abundant and varied, beetles are able to exploit the wide diversity of food sources available in their many habitats. Some are omnivores, eating both plants and animals. Other beetles are highly specialized in their diet. Many species of leaf beetles, longhorn beetles, and weevils are very host-specific, feeding on only a single species of plant. Ground beetles and rove beetles (family Staphylinidae), among others, are primarily carnivorous and will catch and consume many other arthropods and small prey, such as earthworms and snails. While most predatory beetles are generalists, a few species have more specific prey requirements or preferences.[16]

Decaying organic matter is a primary diet for many species. This can range from dung, which is consumed by coprophagous species (such as certain scarab beetles of the family Scarabaeidae), to dead animals, which are eaten by necrophagous species (such as the carrion beetles of the family Silphidae). Some of the beetles found within dung and carrion are in fact predatory. These include the clown beetles, preying on the larvae of coprophagous and necrophagous insects.


Defense and predation

Beetles may be preyed upon by other insects such as robber flies

Beetles and their larvae have a variety of strategies to avoid being attacked by predators or parasitoids. These include camouflage, mimicry, toxicity, and active defense. Camouflage involves the use of coloration or shape to blend into the surrounding environment. This sort of protective coloration is common and widespread among beetle families, especially those that feed on wood or vegetation, such as many of the leaf beetles (family Chrysomelidae) or weevils. In some of these species, sculpturing or various colored scales or hairs cause the beetle to resemble bird dung or other inedible objects. Many of those that live in sandy environments blend in with the coloration of the substrate.[17] For example, the Giant African longhorn beetle (Petrognatha gigas) which resembles the moss and bark of the tree from which it feeds on.

Another defense that often uses color or shape to deceive potential enemies is mimicry. A number of longhorn beetles (family Cerambycidae) bear a striking resemblance to wasps, which helps them avoid predation even though the beetles are in fact harmless. This defense can be found to a lesser extent in other beetle families, such as the scarab beetles. Beetles may combine their color mimicry with behavioral mimicry, acting like the wasps they already closely resemble. Many beetle species, including ladybirds, blister beetles, and lycid beetles can secrete distasteful or toxic substances to make them unpalatable or even poisonous. These same species often exhibit aposematism, where bright or contrasting color patterns warn away potential predators, and there are, not surprisingly, a great many beetles and other insects that mimic these chemically protected species.[10]

Clytus arietis (Cerambycidae), a wasp mimic

Chemical defense is another important defense found amongst species of Coleoptera, usually being advertised by bright colors. Others may utilize behaviors that would be done when releasing noxious chemicals (for example,, Tenebrionidae). Chemical defense may serve purposes other than just protection from vertebrates, such as protection from a wide range of microbes, and repellents. Some species release chemicals in the form of a spray with surprising accuracy, such as ground beetles (Carabidae), may spray chemicals from their abdomen to repel predators. Some species take advantage of the plants from which they feed, and sequester the chemicals from the plant that would protect it and incorporate into their own defense. African carabid beetles (for example,, Anthia and Thermophilium) employ the same chemicals used by ants, while Bombardier beetles have a their own unique separate gland, spraying potential predators from far distances.[17]

Large ground beetles and longhorn beetles may defend themselves using strong mandibles and/or spines or horns to forcibly persuade a predator to seek out easier prey.[17] Many species have large protrusions from their thorax and head such as the Rhinoceros beetle, which can be used to defended themselves from predators. Many species of weevil that feed out in the open on leaves of plants react to attack by employing a "drop-off reflex". Even further, some will combine it with thanatosis, which they will close up their legs, antennae, mandibles, etc. and use their cryptic coloration to blend in with the background. Species with varied coloration do not do this as they can not camaflouge.[18]


There are over 1000 known species of beetles to be either parasitic, predatory, or commensals in the nests of ants.[19] Most beetle larvae can be considered parasites, as they feed on the plants and live inside the bark of trees and plants. Though there are a few species that are ectoparasitic to mammals, such as Platypsyllus castoris, which is affects beavers (Castor spp.). This beaver beetle parasite is a parasite as both an adult and a larva, with the appropriate modifications. They are wingless and eyeless with a striking dorso-ventral flattening. Additionally, P. castoris, has a remarkably modified antennal club, with antennomeres 3-11 shortened, globularly compacted, and partly enclosed in a scoop shaped antennomere 2, as is also found in Gyrinidae and Dryopidae.[20]

other parasites include those who are parasitoids of other invertebrates, such as the small hive beetle (Aethina tumida) infecting Honey bee hives. The larvae tunnel through comb towards stored honey or pollen, damaging or destroying cappings and comb in the process. Larvae defecate in honey and the honey becomes discolored from the feces, which causes fermentation and a frothiness in the honey; the honey develops a characteristic odor of decaying oranges. Damage and fermentation cause honey to run out of combs, destroing large portions in hives and sometimes the extracting rooms. Heavy infestations cause bees to abscond; some beekeepers have reported the rapid collapse of even strong colonies.[21]


Beetle-pollinated flowers are usually large, greenish or off-white in color and heavily scented. Scents may be spicy, fruity, or similar to decaying organic material. Most beetle-pollinated flowers are flattened or dish shaped, with pollen easily accessible, although they may include traps to keep the beetle longer. The plant's ovaries are usually well protected from the biting mouthparts of their pollinators.[7] Beetles may be particularly important in some parts of the world such as semi-arid areas of southern Africa and southern California[22] and the montane grasslands of KwaZulu-Natal in South Africa.[23]


1: The adult beetle burrows hole into wood and lays eggs, carrying fungal spores in their mycangia
2: The larva feeds on the fungus which digest the wood, removing toxins: they mutually benefit
3: The larva pupates and then ecloses.

Amongst most orders of insects, mutualism is not common, however there are some examples in species of Coleoptera. Such as the Ambrosia beetle, the Ambrosia fungus, and probably bacteria. The beetles excavate tunnels in dead trees in which they cultivate fungal gardens, their sole source of nutrition. After landing on a suitable tree, an ambrosia beetle excavates a tunnel in which it releases spores of its fungal symbiont. The fungus penetrates the plant's xylem tissue, digests it, and concentrates the nutrients on and near the surface of the beetle gallery; so the weevils and the fungus both benefit. The beetles can not eat due to toxins, which uses its relationship with fungi to help overcome it's host tree defenses and to provide nutrition for their larvae.[24]

The beetle-fungal mutualism is chemically mediated by a bacterially produced polyunsaturated peroxide. The molecule's selective toxicity toward the beetle's fungal antagonist, combined with the prevalence and localization of its bacterial source, indicates an insect-microbe association that is both mutualistic and coevolved. This unexpected finding in a well-studied system indicates that mutualistic associations between insects and antibiotic-producing bacteria are more common than currently recognized and that identifying their small-molecule mediators can provide a powerful search strategy for therapeutically useful antimicrobial compounds.[24][25]


Pseudoscorpions are small arachnids with a flat, pear-shaped body and pincers that resemble those of scorpions (only distant relatives), usually ranging from 2 to 8 millimetres (0.08 to 0.31 in) in length.[26] Their small size allows them to hitch rides under the elytra of a giant harlequin beetle to be dispersed over wide areas while simultaneously being protected from predators. They may also find mating partners as other individuals join them on the beetle. This would be a form of parasitism if the beetle was harmed in the process, however the beetle is, presumably, unaffected by the presence of the hitchhikers.[27][28]

Phylogeny and systematics

Baltic amber inclusions, from the Eucene era, 50 million years old (Coleoptera, Scraptiidae)

Fossil record

A 2007 study based on DNA of living beetles and maps of likely beetle evolution indicated that beetles may have originated during the Lower Permian, up to 299 million years ago.[29] In 2009, a fossil beetle was described from the Pennsylvanian of Mazon Creek, Illinois, pushing the origin of the beetles to an earlier date, 318 to 299 million years ago.[30] Fossils from this time have been found in Asia and Europe, for instance in the red slate fossil beds of Niedermoschel near Mainz, Germany.[31] Further fossils have been found in Obora, Czechia and Tshekarda in the Ural mountains, Russia.[32] However, there are only a few fossils from North America before the middle Permian, although both Asia and North America had been united to Euramerica. The first discoveries from North America were made in the Wellington formation of Oklahoma and were published in 2005 and 2008.[33][34]

As a consequence of the Permian–Triassic extinction event, there is only little fossil record of insects including beetles from the Lower Triassic.[35] However, there are a few exceptions, like in Eastern Europe: at the Babiy Kamen site in the Kuznetsk Basin numerous beetle fossils were discovered, even entire specimen of the infraorders Archostemata (e.g. Ademosynidae, Schizocoleidae), Adephaga (e.., Triaplidae, Trachypachidae) and Polyphaga ( e.g. Hydrophilidae, Byrrhidae, Elateroidea) and in nearly a perfectly preserved condition.[36] However, species from the families Cupedidae and Schizophoroidae are not present at this site, whereas they dominate at other fossil sites from the Lower Triassic. Further records are known from Khey-Yaga, Russia in the Korotaikha Basin.[33] There are many important sites from the Jurassic, with more than 150 important sites with beetle fossils, the majority being situated in Eastern Europe and North Asia. In North America and especially in South America and Africa the number of sites from that time period is smaller and the sites have not been exhaustively investigated yet. Outstanding fossil sites include Solnhofen in Upper Bavaria, Germany,[37] Karatau in South Kazakhstan,[38] the Yixian formation in Liaoning, North China,[39] as well as the Jiulongshan formation and further fossil sites in Mongolia. In North America there are only a few sites with fossil records of insects from the Jurassic, namely the shell limestone deposits in the Hartford basin, the Deerfield basin and the Newark basin.[33][40]

Fossil buprestid beetle from the Eocene Messel pit, which retains its structural color

There is a large number of important fossil sites worldwide containing beetles from the Cretaceous. Most of them are located in Europe and Asia and belong to the temperate climate zone during the Cretaceous. A few of the fossil sites mentioned in the chapter Jurassic also shed some light on the early cretaceous beetle fauna (for example, the Yixian formation in Liaoning, North China).[39] Further important sites from the Lower Cretaceous include the Crato Fossil Beds in the Araripe basin in the Ceará, North Brazil as well as overlying Santana formation, with the latter was situated near the paleoequator, or the position of the earth's equator in the geologic past as defined for a specific geologic period. In Spain there are important sites near Montsec and Las Hoyas. In Australia the Koonwarra fossil beds of the Korumburra group, South Gippsland, Victoria is noteworthy. Important fossil sites from the Upper Cretaceous are Kzyl-Dzhar in South Kazakhstan and Arkagala in Russia.[33]

The phylogenetic growth of three different trophic levels in Coleoptera by number of genera


The oldest known insect that resembles species of Coleoptera date back to the Lower Permian (270 mya), though they instead have 13-segmented antennae, elytra with more fully developed venation and more irregular longitudinal ribbing, and an abdomen and ovipositor extending beyond the apex of the elytra. The oldest true beetle, that is having features that include 11-segmented antennae, regular longitudinal ribbing on the elytra, and having genitalia that are internal.[41] At the end of the Permian, the biggest mass extinction in the history history took place, collectively called the Permian–Triassic extinction event: 30% of all insect species became extinct, however, it is the only mass extinction of insects in Earth's history until today.[33]

Due to the P-Tr extinction, there is only little fossil record of insects including beetles from the Lower Triassic (220 million years ago). Around this time, during the Late Triassic, mycetophagous, or fungus feeding species (e.g. Cupedidae) appear in the fossil record. In the stages of the Upper Triassic representatives of the algophagous, or algae feeding species (e.g. Triaplidae and Hydrophilidae) begin to appear, as well as predatory water beetles. The first primitive weevils appear (e.g. Obrienidae), as well as the first representatives of the rove beetles (e.g. Staphylinidae), which show no marked difference in physique compared to recent species.[33]

During the Jurassic (210 to 145 million years ago) there was a dramatic increase in the known diversity of family-level Coleoptera.[33] This includes the development and growth of carnivorous and herbivorous species. Species of the superfamily Chrysomeloidea are believed to have developed around the same time, which include a wide array of plant host ranging from cycads and conifers, to angiosperms.[41] Close to the Upper Jurassic, the portion of the Cupedidae decreased, however at the same time the diversity of the early plant eating, or phytophagous species increased. Most of the recent phytophagous species of Coleoptera feed on flowering plants or angiosperms. It is believed that the increase in diversity of the angiosperms also influenced the diversity of the phytophagous species, which doubled during the Middle Jurassic. However, recently doubts have been raised since the increase of the number of beetle families during the Cretaceous does not correlate with the increase of the number of angiosperm species.[42] Also around the same time, numerous primitive weevils (e.g. Curculionoidea) and click beetles (e.g. Elateroidea) appeared. Also first jewel beetles (e.g. Buprestidae) are present, however, they were rather rare until the Cretaceous.[43][44][45] The first scarab beetles would appear around this time, however they were not coprophagous, or feeding upon fecal matter, presumably feeding upon the rotting wood with the help of fungus, and early example of a mutualistic relationship (see the Mutualism section ).

The Cretaceous witness the initiation of the most recent round of southern landmass fragmentation, via the opening of the southern Atlantic ocean and the isolation of New Zealand, while the South America, Antarctica, and Australia grew more distant.[41] During the Cretaceous the diversity of Cupedidae and Archostemata decreased considerably. Predatory ground beetles (Carabidae) and rove beetles (Staphylinidae) began to distribute into different patterns: whereas the Carabidae predominantly occurred in the warm regions, the Staphylinidae and click beetles (Elateridae) preferred many areas with temperate climate. Likewise, predatory species of Cleroidea and Cucujoidea, hunted their prey under the bark of trees together with the jewel beetles (Buprestidae). The jewel beetles diversity increased rapidly during the Cretaceous, as they were the primary consumers of wood,[46] while longhorn beetles (Cerambycidae) were rather rare and their diversity increased only towards the end of the Upper Cretaceous.[33] The first coprophagous beetles have been recorded from the Upper Cretaceous,[47] and are believed to have lived on the excrement of herbivorous dinosaurs, however there is still a discussion, whether the beetles were always tied to mammals during its development.[48] Also, the first species with an adaption of both larvae and adults to the aquatic lifestyle are found. Whirligig beetles (Gyrinidae) were moderately diverse, although other early beetles (e.g. Dytiscidae) were less, with the most widespread being the species of Coptoclavidae, which preyed on aquatic fly larvae.[33]

The time between the Paleogene and the Neogene, or more recent history is where today's beetles developed. During this time, the continents began to situate themselves to where we see them today. Around 5 million years ago the land bridge between South America and North America was formed, and this is when fauna exchange between Asia and North America started. Even though many recent genera and species already existed during the Miocene, however, their distribution differed considerably from today's.[33]


The suborders diverged in the Permian and Triassic. Their phylogenetic relationship is uncertain, with the most popular hypothesis being that Polyphaga and Myxophaga are most closely related, with Adephaga as the sister group to those two, and Archostemata as sister to the other three collectively.[41][49] Although there are six other competing hypotheses, the other most widely discussed one is Myxophaga as the sister group of all remaining beetles rather than just of Polyphaga.[50] Evidence for a close relationship of the two suborders, Polyphaga and Myxophaga, includes the shared reduction in the number of larval leg articles. The Adephaga is further considered as sister to Myxophaga and Polyphaga, based on their completely sclerotized elytra, reduced number of crossveins in the hind wings, and the folded (as opposed to rolled) hind wings of those three suborders.

Recent cladistic analysis of some of the structural characteristics supports the Polyphaga and Myxophaga hypothesis.[49] The membership of the clade Coleoptera is not in dispute, with the exception of the twisted-wing parasites, Strepsiptera. These odd insects have been regarded as related to the beetle families Rhipiphoridae and Meloidae, with which they share first-instar larvae that are active, host-seeking triungulins and later-instar larvae that are endoparasites of other insects, or the sister group of beetles, or more distantly related to insects.[50][51]


There are about 450,000 species of beetles – representing about 40% of all known insects. Such a large number of species poses special problems for classification, with some families consisting of thousands of species and needing further division into subfamilies and tribes. This immense number of species allegedly led evolutionary biologist J. B. S. Haldane to quip, when some theologians asked him what could be inferred about the mind of the Creator from the works of His Creation, that God displayed "an inordinate fondness for beetles".[52]

Relationship to people

As pests

Cotton boll weevil

About 34 of beetle species are phytophagous in both the larval and adult stages, living in or on plants, wood, fungi, and a variety of stored products, including cereals, tobacco, and dried fruits. Because many of these plants are important for agriculture, forestry, and the household, the beetle can be considered a pest.[5] Some of these species cause significant damage, such as the Boll weevil, which feeds on cotton buds and flowers. The Boll Weevil crossed the Rio Grande near Brownsville, Texas to enter the United States from Mexico around 1892[53] and had reached southeastern Alabama by 1915. By the mid 1920s it had entered all cotton growing regions in the U.S., traveling 40 to 160 miles (60–260 km) per year. It remains the most destructive cotton pest in North America. Mississippi State University has estimated that since the boll weevil entered the United States it has cost U.S. cotton producers about $13 billion, and in recent times about $300 million per year.[53] Many other species also have done extensive damage to plant populations, such as the bark beetle and elm Leaf beetle. The bark beetle and elm leaf beetle, among other species, have been known to nest in elm trees. Bark beetles in particular carry Dutch elm disease as they move from infected breeding sites to feed on healthy elm trees. The spread of Dutch elm disease by the beetle has led to the devastation of elm trees in many parts of the Northern Hemisphere, notably in Europe and North America.[54]

Larvae of the Colorado potato beetle, Leptinotarsa decemlineata

Situations in which a species has developed immunity to pesticides are worse, as in the case of the Colorado potato beetle, Leptinotarsa decemlineata, which is a notorious pest of potato plants. Crops are destroyed and the beetle can only be treated by employing expensive pesticides, many of which it has begun to develop resistance to. As well as potatoes, suitable hosts can be a number of plants from the potato family (Solanaceae), such as nightshade, tomato, eggplant and capsicum. The Colorado potato beetle has developed resistance to all major insecticide classes, although not every population is resistant to every chemical.[55]

Pests don't only affect agriculture, but can also even affect houses, such as the Death watch beetle. The death watch beetle, Xestobium rufovillosum, (family Anobiidae) is of considerable importance as a pest of older wooden buildings in Great Britain. It attacks hardwoods such as oak and chestnut, always where some fungal decay has taken or is taking place. It is thought that the actual introduction of the pest into buildings takes place at the time of construction.[56]

Other pest include the Coconut hispine beetle, Brontispa longissima, feeds on young leaves and damages seedlings and mature coconut palms. On September 27, 2007, Philippines' Metro Manila and 26 provinces were quarantined due to having been infested with this pest (to save the $800-million Philippine coconut industry).[57] The mountain pine beetle normally attacks mature or weakened lodgepole pine. It can be the most destructive insect pest of mature pine forests. The current infestation in British Columbia is the largest Canada has ever seen.[58]

As beneficial

Coccinella septempunctata, a beneficial beetle

Beetles are not only pests, but can also be beneficial, usually by controlling the populations of pests. One of the best, and widely known, examples are the Ladybugs or ladybirds (family Coccinellidae). Both the larvae and adults are found feeding on aphid colonies. Other ladybugs feed on scale insects and mealybugs. If normal food sources are scarce, they may feed on other things, such as small caterpillars, young plant bugs, honeydew and nectar.[59] Ground beetles (family Carabidae) are common predators of many different insects and other arthropods, including fly eggs, caterpillars, wireworms and others.[60]

Dung beetles (Coleoptera, Scarabidae) have been successfully used to reduce the populations of pestilent flies and parasitic worms that breed in cattle dung. The beetles make the dung unavailable to breeding pests by quickly rolling and burying it in the soil, with the added effect of improving soil fertility and nutrient cycling. The Australian Dung Beetle Project (1965–1985), led by Dr. George Bornemissza of the Commonwealth Scientific and Industrial Research Organization introduced species of dung beetle to Australia from South Africa and Europe and effectively reduced the bush fly (Musca vetustissima) population by 90%.

Dung beetles play a remarkable role in agriculture. By burying and consuming dung, they improve nutrient recycling and soil[61] structure. They also protect livestock, such as cattle, by removing the dung which, if left, could provide habitat for pests such as flies. Therefore, many countries have introduced the creature for the benefit of animal husbandry. In developing countries, the beetle is especially important as an adjunct for improving standards of hygiene. The American Institute of Biological Sciences reports that dung beetles save the United States cattle industry an estimated US$380 million annually through burying above-ground livestock faeces.[62]

Some beetles help in a professional setting, doing things that people can't; such as those of the family Dermestidae are often used in taxidermy and preparation of scientific specimens to clean bones of remaining soft tissue. The beetle larvae to clean skulls because they do a thorough job of cleaning, and the beetle larvae do not leave the tool marks that taxidermists tools do. Another benefit is that with no traces of meat remaining, and no emulsified fats in the bones, the trophy will not develop the unpleasant dead odor. Using the beetle larvae means that all cartilage is removed along with the flesh, leaving the bones spotless.[63]

Mealworms presented in a bowl for human consumption.

As food

Insects are used as human food in 80% of the world's nations.[64] Beetles are the most widely eaten insects. 344 species are known to be used as food. They are usually eaten in the larval stage.[65] The mealworm is the most eaten beetle species. The larvae of the darkling beetle and the rhinoceros beetle are also commonly eaten.

Zopheridae examples of jewelry taken at the Texas A&M University Insect Collection in College Station, Texas.

In art

Many beetles have beautiful and durable elytra that have been used as a material in arts, with Beetlewing the best example.[66] Sometimes they're also incorporated into ritual objects for their religious significance. Whole beetles, either by themselves or encased in clear plastic, are also made into everything from cheap souvenirs such as key chains to expensive fine-art jewelry. In parts of Mexico, beetles of the genus Zopherus are made into living brooches by attaching costume jewelry and golden chains. This is made possible by the incredibly hard elytra and sedentary habits of the genus.[67]

In ancient culture

in hieroglyphs
A scarab statue at the Karnak temple complex
A scarab, depicted on the walls of Tomb KV6 in the Valley of the Kings

Beetles are prominent in ancient culture, however the most would probably be the dung beetle in Ancient Egypt. Several species of the dung beetle, most notably the species Scarabaeus sacer (often referred to as the sacred scarab), enjoyed a sacred status among the ancient Egyptians.[68] Popular interpretation in modern academia theorizes the hieroglyphic image of the beetle represents a triliteral phonetic that Egyptologists transliterate as xpr or ḫpr and translate as "to come into being", "to become" or "to transform". The derivative term xprw or ḫpr(w) is variously translated as "form", "transformation", "happening", "mode of being" or "what has come into being", depending on the context. It may have existential, fictional, or ontologic significance.[69]

The scarab was linked to Khepri ("he who has come into being"), the god of the rising sun. The ancients believed that the dung beetle was only male in gender, and reproduced by depositing semen into a dung ball. The supposed self-creation of the beetle resembles that of Khepri, who creates himself out of nothing. Moreover, the dung ball rolled by a dung beetle resembles the sun. Plutarch wrote:

The race of beetles has no female, but all the males eject their sperm into a round pellet of material which they roll up by pushing it from the opposite side, just as the sun seems to turn the heavens in the direction opposite to its own course, which is from west to east."[70]

The ancient Egyptians believed that Khepri renewed the sun every day before rolling it above the horizon, then carried it through the other world after sunset, only to renew it, again, the next day. Some New Kingdom royal tombs exhibit a threefold image of the sun god, with the beetle as symbol of the morning sun. The astronomical ceiling in the tomb of Ramses VI portrays the nightly "death" and "rebirth" of the sun as being swallowed by Nut, goddess of the sky, and re-emerging from her womb as Khepri.[68]

Excavations of ancient Egyptian sites have yielded images of the scarab in bone, ivory, stone, Egyptian faience, and precious metals, dating from the Sixth Dynasty and up to the period of Roman rule. They are generally small, bored to allow stringing on a necklace, and the base bears a brief inscription or cartouche. Some have been used as seals. Pharaohs sometimes commissioned the manufacture of larger images with lengthy inscriptions, such as the commemorative scarab of Queen Tiye. Massive sculptures of scarabs can be seen at Luxor Temple, at the Serapeum in Alexandria (see Serapis) and elsewhere in Egypt.

The scarab was of prime significance in the funerary cult of ancient Egypt.[71] Scarabs, generally, though not always, were cut from green stone, and placed on the chest of the deceased. Perhaps the most famous example of such "heart scarabs" is the yellow-green pectoral scarab found among the entombed provisions of Tutankhamen. It was carved from a large piece of Libyan desert glass. The purpose of the "heart scarab" was to ensure that the heart would not bear witness against the deceased at judgement in the Afterlife. Other possibilities are suggested by the "transformation spells" of the Coffin Texts, which affirm that the soul of the deceased may transform (xpr) into a human being, a god, or a bird and reappear in the world of the living.

In contrast to funerary contexts, some of ancient Egypt's neighbors adopted the scarab motif for seals of varying types. The best-known of these being Judean LMLK seals (8 of 21 designs contained scarab beetles), which were used exclusively to stamp impressions on storage jars during the reign of Hezekiah. The scarab remains an item of popular interest thanks to modern fascination with the art and beliefs of ancient Egypt. Scarab beads in semiprecious stones or glazed ceramics can be purchased at most bead shops, while at Luxor Temple a massive ancient scarab has been roped off to discourage visitors from rubbing the base of the statue "for luck".

In modern culture

Beetles still play a role in modern culture such as their use in insect fighting. Normally exploiting the large beetle's territorial behavior. Individuals may hoard many different type of insects for the fights. Some of the most popular are the Stag Beetle, Rhinoceros Beetle, Kabutomushi, and Goliath Beetle, as their sheer size and jumping ability make them formidable opponents. They are trained by their owners to become stronger and more aggressive.

The study of beetles is called coleopterology (from Coleoptera, see above, and Greek -λογία, -logia), and its practitioners are coleopterists. Coleopterists have formed organizations to facilitate the study of beetles. Among these is The Coleopterists Society, an international organization based in the United States. Such organizations may have both professionals and amateurs interested in beetles as members. Research in this field is often published in peer-reviewed journals specific to the field of coleopterology, though journals dealing with general entomology also publish many papers on various aspects of beetle biology. Some of the journals specific to beetle research are:

  • The Coleopterist (United Kingdom beetle fauna)
  • The Coleopterists Bulletin (published by The Coleopterists Society)
  • Elytron (published by the European Association of Coleopterology)

Further reading

  • Poul Beckmann. Living Jewels: The Natural Design of Beetles. ISBN 3-7913-2528-0. 
  • J. Cooter & M. V. L. Barclay, ed (2006). A Coleopterist’s Handbook. Amateur Entomological Society. ISBN 0-900054-70-0. 
  • Beetle Larvae of the World. Entomological Society of America. ISBN 0-643-05506-1. 
  • David Grimaldi, Michael S. Engel. Evolution of the Insects. ISBN 0-521-82149-5. 
  • K. W. Harde. A Field Guide in Color to Beetles. pp. 7–24. ISBN 0-7064-1937-5. 
  • R. E. White (1983). Beetles. New York, NY: Houghton Mifflin Company. ISBN 0-395-91089-7. 


  1. ^ a b c d e f g h i j k l m n o p q r s t Powell (2009)
  2. ^ P. M. Hammond 1992. Species inventory. pp. 17–39 in Global Biodiversity, Status of the Earth’s Living Resources, B. Groombridge, ed. Chapman and Hall, London. 585 pp.
  3. ^ Arthur D. Chapman (2009) (PDF). Numbers of Living Species in Australia and the World (2nd ed.). Department of the Environment, Water, Heritage and the Arts. ISBN 978-0-642-56861-8. 
  4. ^ Harper, Douglas. "Coleoptera". The Online Etymology Dictionary. Retrieved 26 February 2011. 
  5. ^ a b c d e f g h Gilliott, Cedric (August 1995). Entomology (2 ed.). Springer-Verlag New York, LLC. ISBN 0-306-44967-6. 
  6. ^ a b Foottit, Robert G.; Peter Holdridge Adler (2009). Insect biodiversity: science and society. John Wiley and Sons. ISBN 1405151420. 
  7. ^ a b Gullan, P.J.; P.S. Cranston (March 22, 2010). The Insects: An Outline of Entomology (4 ed.). Oxford: Wiley, John & Sons, Incorporated. ISBN 1-444-33036-5. 
  8. ^ Michael A. Ivie (2002). Ross H. Arnett & Michael Charles Thomas. ed. American Beetles: Polyphaga: Scarabaeoidea through Curculionoidea. American Beetles. 2. CRC Press. ISBN 9780849309540. 
  9. ^ Schmidt-Nielsen, Knut (Jan 15, 1997). "Insect Respiration". Animal Physiology: Adaptation and Environment (5th ed.). Cambridge University Press. pp. 55. ISBN 0521570980. 
  10. ^ a b Evans & Bellamy (2000)
  11. ^ Scoble, MJ. (1992). The Lepidoptera: Form, function, and diversity.. Oxford Univ. Press. ISBN 9781402062421. 
  12. ^ R. H. Arnett, Jr. & M. C. Thomas (2001). "Haliplidae". American Beetles, Volume 1. CRC Press, Boca Raton, Florida. pp. 138–143. ISBN 0-8493-1925-0. 
  13. ^ a b "Mountain Pine Beetle - Beetle Love". Parks Canada. Retrieved March 13, 2011. 
  14. ^ T. D. Wyatt & W. A. Foster (1989). "Parental care in the subsocial intertidal beetle, Bledius spectabilis, in relation to parasitism by the ichneumonid wasp, Barycnemis blediator". Behaviour 110 (1–4): 76–92. doi:10.1163/156853989X00394. JSTOR 4534785. 
  15. ^ Hanski, Ilkka; Yves, Cambefort (1991). Dung Beetle Ecology. Princeton University Press. pp. 626–672. ISBN 0691087393. 
  16. ^ A.L. Lobanov (2002). "feeding". Beetle Biology And Ecology. Beetles (Coleoptera) and Coleopterologist. Retrieved March 13, 2011. 
  17. ^ a b c Evans & Bellamy (2000), p. 126
  18. ^ Powell (2009), p. 199
  19. ^ Meyer, John R. (8 March 2005). "Coleoptera". Department of Entomology, NC State University. Retrieved March 13, 2011. 
  20. ^ Stewart B. Peck (2006). "Distribution and biology of the ectoparasitic beaver beetle Platypsyllus castoris Ritsema in North America (Coleoptera: Leiodidae: Platypsyllinae)". Insecta Mundi 20 (1–2): 85–94. 
  21. ^ P. Neumann & P. J. Elzen (2004). "The biology of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae): Gaps in our knowledge of an invasive species". Apidologie 35 (3): 229–247. doi:10.1051/apido:2004010. 
  22. ^ G. D. Jones & S. D. Jones (2001). "The uses of pollen and its implication for Entomology". Neotropical Entomology 30 (3): 314–349. doi:10.1590/S1519-566X2001000300001. 
  23. ^ J. Ollerton, S. D. Johnson, L. Cranmer & S. Kellie (2003). "The pollination ecology of an assemblage of grassland asclepiads in South Africa". Annals of Botany 92 (6): 807–834. doi:10.1093/aob/mcg206. 
  24. ^ a b Malloch, D., and M. Blackwell. 1993. Dispersal biology of ophiostomatoid fungi. p. 195-206. In: Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathology. Eds., Wingfield, M.J., K.A. Seifert, and J.F. Webber. APS, St. Paul.
  25. ^ H. Francke-Grossmann (1967). "Ectosymbiosis in wood inhabiting insects". In M. Henry. Symbiosis. 2. New York: Academic Press. pp. 141–205. 
  26. ^ "Pseudoscorpions". Insect Advice from Extension. College of Agricultural Sciences. 2011. Retrieved March 13, 2011. 
  27. ^ Gail, Vines (18 April 1992). "Hitchhiking pseudoscorpions take beetles for a ride". New Scientist (1817). 
  28. ^ Poole, Robert W. (2004). "Ecology - Population Ecology - Commensalism". Nearctica. 
  29. ^ Dave Mosher (December 26, 2007). "Modern beetles predate dinosaurs". Live Science. Retrieved June 24, 2010. 
  30. ^ Oliver Béthoux (2009). "The earliest beetle identified". Journal of Paleontology 83 (6): 931–937. doi:10.1666/08-158.1. 
  31. ^ Hörnschemeyer, T.; H. Stapf, Terra Nostra. "Die Insektentaphozönose von Niedermoschel (Asselian, unt. Perm; Deutschland)" (in German). Schriften der Alfred-Wegener-Stiftung (99/8): 98. 
  32. ^ J. Kukalová (1969). "On the systematic position of the supposed Permian beetles, Tshecardocoleidae, with a description of a new collection from Moravia". Sborník geologických Věd, Paleontologie 11: 139–161. 
  33. ^ a b c d e f g h i j Benisch, Christoph (2010). "Phylogeny of the beetles". The beetle fauna of Germany. Kerbtier. Retrieved March 16, 2011. 
  34. ^ Beckemeyer, R. J.; M. S. Engel (2008). "A second specimen of Permocoleus (Coleoptera) from the Lower Permian Wellington Formation of Noble County, Oklahoma". Journal of the Kansas Entomological Society 81 (1): 4–7. doi:10.2317/JKES-708.01.1. 
  35. ^ D. E. Shcherbakov (2008). "On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis". Paleontological Journal 42 (1): 15–31. 
  36. ^ Ponomarenko, A. G. (2004). "Beetles (Insecta, Coleoptera) of the Late Permian and Early Triassic". Paleontological Journal 38 (Suppl. 2): S185–S196. 
  37. ^ Alexandr G. Ponomarenko (1985). "Fossil insects from the Tithonian "Solnhofener Plattenkalke" in the Museum of Natural History, Vienna" (PDF). Annalen des Naturhistorischen Museums in Wien 87 (1): 135–144. 
  38. ^ E. V. Yan (2009). "A new genus of elateriform beetles (Coleoptera, Polyphaga) from the Middle-Late Jurassic of Karatau" (PDF). Paleontological Journal 43 (1): 78–82. doi:10.1134/S0031030109010080. 
  39. ^ a b J.-J. Tan; , D. Ren, M. Liu (2005). "New ommatids from the Late Jurassic of western Liaoning, China (Coleoptera: Archostemata)" (PDF). Insect Science 12 (3): 207–216. doi:10.1111/j.1005-295X.2005.00026.x. 
  40. ^ A. G. Ponomarenko (1997). "New beetles of the family Cupedidae from the Mesozoic of Mongolia. Ommatini, Mesocupedini, Priacmini" (PDF). Paleontological Journal 31 (4): 389–399. 
  41. ^ a b c d Powell (2009), p. 186
  42. ^ Labandeira, C. C.; Sepkoski, J. J. (1993). "Insect diversity in the fossil record" (PDF). Science 261 (5119): 310–315. Bibcode 1993Sci...261..310L. doi:10.1126/science.11536548. PMID 11536548. 
  43. ^ GRATSHEV, Vadim G.; ZHERIKHIN, Vladimir V., J. J. (15 Oct., 2003). "Insect diversity in the fossil record" (PDF). Acta Zoologica Cracoviensia (Fossil Insects) (261): 129–138. 
  44. ^ Chang, H.; Zhang, F.; Ren, D. (2008). "A new genus and two new species of fossil elaterids from the Yixian Formation of Western Liaoning, China (Coleoptera: Elateridae)". Zootaxa (1785): 54–62. 
  45. ^ Orekhovo-Zuyevo, A. V. A. (1993). "Jurassic and Lower Cretaceous Buprestidae (Coleoptera) from Eurasia". Paleontological Journal (1A): 9–34. 
  46. ^ "New Jewel Beetles (Coleoptera: Buprestidae) from the Cretaceous of Russia, Kazakhstan, and Mongolia" (PDF). Paleontological Journal (43): 277–281. 2009. 
  47. ^ Chin, K.; Gill, B. D. (1996). "Dinosaurs, dung beetles, and conifers; participants in a Cretaceous food web". Palaois (11): 280–285. 
  48. ^ Antonio Arillo & Vicente M. Ortuño (2008). "Did dinosaurs have any relation with dung-beetles? (The origin of coprophagy)". Journal of Natural History 42 (19&20): 1405–1408. doi:10.1080/00222930802105130. 
  49. ^ a b Beutel, R.; F. Haas (2000). "Phylogenetic relationships of the suborders of Coleoptera (Insecta)". Cladistics 16: 103–141. doi:10.1111/j.1096-0031.2000.tb00350.x. 
  50. ^ a b Kukalová-Peck, J.; J. F. Lawrence (1993). "Evolution of the hind wing in Coleoptera". Canadian Entomologist 125 (2): 181–258. doi:10.4039/Ent125181-2. 
  51. ^ Maddison, David R. (2000 version 11 September 2000 (under construction)). "Coleoptera. Beetle". Tree of Life Web Project. [ TolWeb]. Retrieved 2011-03-18. 
  52. ^ G. Evelyn Hutchinson (1959). "Homage to Santa Rosalia or why are there so many kinds of animals?". The American Naturalist 93 (870): 145–159. doi:10.1086/282070. JSTOR 2458768. 
  53. ^ a b Mississippi State University. "History of the Boll Weevil in the United States". Economic impacts of the boll weevil. 
  54. ^ "Elm Leaf Beetle". University of California. May 11, 2011. Retrieved July 17, 2011. 
  55. ^ A. Alyokhin, M. Baker, D. Mota-Sanchez, G. Dively & E. Grafius (2008). "Colorado potato beetle resistance to insecticides". American Journal of Potato Research 85 (6): 395–413. doi:10.1007/s12230-008-9052-0. 
  56. ^ Adcock, Edward (2005). "Pests - Death watch beelte". Conservation and collective care. University of Oxford. Retrieved July 17, 2011. 
  57. ^ Amy R. Remo (September 27, 2007). "Beetles infest coconuts in Manila, 26 provinces". Philippine Daily Inquirer. 
  58. ^ "The Mountain Pine Beetle in British Columbia". Natural Resources Canada. August 19, 2008. Retrieved June 24, 2010. 
  59. ^ "'Deadly ladybird' sighted in UK". BBC News. 5 October 2004. Retrieved 17 June 2010. 
  60. ^ B. Kromp (1999). "Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation aspects and enhancement". Agriculture, Ecosystems and Environment 74 (1–3): 187–228. doi:10.1016/S0167-8809(99)00037-7. 
  61. ^ Brown, J., Scholtz, C.H., Janeau, J-L., Grellier, S. and Podwojewski, P. 2010. Dung beetles (Coleoptera: Scarabaeidae) can improve soil hydrological properties. Applied Soil Ecology 46: 9-16
  62. ^ Losey, John E. and Mace Vaughan (2006). "The Economic Value of Ecological Services Provided by Insects". BioScience 56(4):311-323.
  63. ^ P., Christy. "The Benefit of Dermestid Beetles". The Daily Puppy. Retrieved July 17, 2011. 
  64. ^ Damian Carrington. "Insects could be the key to meeting food needs of growing global population", The Guardian 1 August 2010. Retrieved 27 February 2011.
  65. ^ Ramos-Elorduy, Julieta; Menzel, Peter (1998). Creepy crawly cuisine: the gourmet guide to edible insects. Inner Traditions / Bear & Company. p. 5. ISBN 9780892817474. 
  66. ^ Life cycle of the rounded jewel beetles, Sternocera spp. วงจรชีวิตของแมลงทับกลมใช้เวลานานถึง 2 ปี - Siam Insect Zoo-Museum
  67. ^ Michael A. Ivie (2002). "105. Zopheridae". In Ross H. Arnett & Michael Charles Thomas. American Beetles: Polyphaga: Scarabaeoidea through Curculionoidea. Volume 2 of American Beetles. CRC Press. pp. 457–462. ISBN 9780849309540. 
  68. ^ a b Zabludoff, Marc (2008). Beetles. Malaysia: Michelle Bison. pp. 14–17. ISBN 9780761425328. 
  69. ^ Dollinger, André (January 2002). "Ancient Egyptian bestiary: Insects". Retrieved July 19, 2011. 
  70. ^ "Isis and Osiris", Moralia, in volume V of the Loeb Classical Library edition, 1936, now in the public domain. Retrieved on 2007-08-02.
  71. ^ Morales-Correa, Ben (2006). "Egyptian Symbols". All-About-Egypt. Retrieved July 19, 2011. 


External links



Wikimedia Foundation. 2010.


Look at other dictionaries:

  • beetle — beetle1 [bēt′ l] n. [ME bitil < OE bitela < bītan, BITE] 1. any of a large order (Coleoptera) of insects, including weevils, with biting mouthparts and hard front wings (elytra) that cover the membranous hind wings when the hind wings are… …   English World dictionary

  • Beetle — Bee tle, n. [OE. bityl, bittle, AS. b[imac]tel, fr. b[imac]tan to bite. See {Bite}, v. t.] Any insect of the order Coleoptera, having four wings, the outer pair being stiff cases for covering the others when they are folded up. See {Coleoptera}.… …   The Collaborative International Dictionary of English

  • Beetle — Bee tle (b[=e] t l), v. t. [imp. & p. p. {Beetled} ( t ld); p. pr. & vb. n. {Beetling}.] 1. To beat with a heavy mallet. [1913 Webster] 2. To finish by subjecting to a hammering process in a beetle or beetling machine; as, to beetle cotton goods …   The Collaborative International Dictionary of English

  • Beetle — steht für VW New Beetle, Automodell von Oktober 1997 bis Juli 2010 VW Beetle, Nachfolgermodell voraussichtlich ab Herbst 2011 erhältlich Diese Seite ist eine Begriffsklärung zur Unterscheidung mehrerer mit demselben Wort bezeichneter Begriffe …   Deutsch Wikipedia

  • Beetle — Bee tle, v. i. [See {Beetlebrowed}.] To extend over and beyond the base or support; to overhang; to jut. [1913 Webster] To the dreadful summit of the cliff That beetles o er his base into the sea. Shak. [1913 Webster] Each beetling rampart, and… …   The Collaborative International Dictionary of English

  • Beetle — Bee tle (b[=e] t l), n. [OE. betel, AS. b[=i]tl, b?tl, mallet, hammer, fr. be[ a]tan to beat. See {Beat}, v. t.] 1. A heavy mallet, used to drive wedges, beat pavements, etc. [1913 Webster] 2. A machine in which fabrics are subjected to a… …   The Collaborative International Dictionary of English

  • Beetle — also Bug informal AmE a small car made by Volkswagen which has a high, rounded top. It was first produced in the 1930s …   Dictionary of contemporary English

  • beetle — vb overhang, jut, project, *bulge, protuberate, protrude, stick out Analogous words: menace, *threaten …   New Dictionary of Synonyms

  • beetle — ► NOUN ▪ an insect with the forewings modified into hard wing cases that cover the hindwings and abdomen. ► VERB informal ▪ hurry along with short, quick steps. ORIGIN Old English, «biter» …   English terms dictionary

  • beetle — beetle1 /beet l/, n., v., beetled, beetling. n. 1. any of numerous insects of the order Coleoptera, characterized by hard, horny forewings that cover and protect the membranous flight wings. 2. (loosely) any of various insects resembling the… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”