- Eutrophication
-
Eutrophication (Greek: eutrophia—healthy, adequate nutrition, development; German: Eutrophie) or more precisely hypertrophication, is the movement of a body of water′s trophic status in the direction of increasing plant biomass, by the addition of artificial or natural substances, such as nitrates and phosphates, through fertilizers or sewage, to an aquatic system.[1] In other terms, it is the "bloom" or great increase of phytoplankton in a water body. Negative environmental effects include hypoxia, the depletion of oxygen in the water, which induces reductions in specific fish and other animal populations. Other species (such as Nemopilema nomurai jellyfish in Japanese waters) may experience an increase in population that negatively affects other species.
Contents
Lakes and rivers
Eutrophication can be human-caused or natural. Untreated sewage effluent and agricultural run-off carrying fertilizers are examples of human-caused eutrophication. However, it also occurs naturally in situations where nutrients accumulate (e.g. depositional environments), or where they flow into systems on an ephemeral basis. Eutrophication generally promotes excessive plant growth and decay, favouring simple algae and plankton over other more complicated plants, and causes a severe reduction in water quality. Enhanced growth of aquatic vegetation or phytoplankton and algal blooms disrupts normal functioning of the ecosystem, causing a variety of problems such as a lack of oxygen needed for fish and shellfish to survive. The water becomes cloudy, typically coloured a shade of green, yellow, brown, or red. Eutrophication also decreases the value of rivers, lakes, and estuaries for recreation, fishing, hunting, and aesthetic enjoyment. Health problems can occur where eutrophic conditions interfere with drinking water treatment.[2]
Eutrophication was recognized as a pollution problem in European and North American lakes and reservoirs in the mid-20th century.[3] Since then, it has become more widespread. Surveys showed that 54% of lakes in Asia are eutrophic; in Europe, 53%; in North America, 48%; in South America, 41%; and in Africa, 28%.[4]
Although eutrophication is commonly caused by human activities, it can also be a natural process particularly in lakes. Eutrophy occurs in many lakes in temperate grasslands, for instance. Paleolimnologists now recognise that climate change, geology, and other external influences are critical in regulating the natural productivity of lakes. Some lakes also demonstrate the reverse process (meiotrophication), becoming less nutrient rich with time.[5][6]
Eutrophication can also be a natural process in seasonally inundated tropical floodplains. In the Barotse Floodplain of the Zambezi River, the first floodwaters of the rainy season are usually hypoxic because of material such as cattle manure and previous decay of vegetation which grew during the dry season. These so-called "red waters" kill many fish.[7] The process can be made worse by the use of fertilizers in crops such as maize, rice, and sugarcane grown on the floodplain.
Human activities can accelerate the rate at which nutrients enter ecosystems. Runoff from agriculture and development, pollution from septic systems and sewers, and other human-related activities increase the flow of both inorganic nutrients and organic substances into ecosystems. Elevated levels of atmospheric compounds of nitrogen can increase nitrogen availability. Phosphorus is often regarded as the main culprit in cases of eutrophication in lakes subjected to "point source" pollution from sewage pipes. The concentration of algae and the trophic state of lakes correspond well to phosphorus levels in water. Studies conducted in the Experimental Lakes Area in Ontario have shown a relationship between the addition of phosphorus and the rate of eutrophication. Humankind has increased the rate of phosphorus cycling on Earth by four times, mainly due to agricultural fertilizer production and application. Between 1950 and 1995, an estimated 600,000,000 tonnes of phosphorus were applied to Earth's surface, primarily on croplands.[8] Policy changes to control point sources of phosphorus have resulted in rapid control of eutrophication.
Ocean waters
Eutrophication is a common phenomenon in coastal waters. In contrast to freshwater systems, nitrogen is more commonly the key limiting nutrient of marine waters; thus, nitrogen levels have greater importance to understanding eutrophication problems in salt water. Estuaries tend to be naturally eutrophic because land-derived nutrients are concentrated where run-off enters a confined channel. Upwelling in coastal systems also promotes increased productivity by conveying deep, nutrient-rich waters to the surface, where the nutrients can be assimilated by algae.
The World Resources Institute has identified 375 hypoxic coastal zones in the world, concentrated in coastal areas in Western Europe, the Eastern and Southern coasts of the US, and East Asia, particularly Japan.[9]
In addition to runoff from land, atmospheric fixed nitrogen can enter the open ocean. A study in 2008 found that this could account for around one third of the ocean’s external (non-recycled) nitrogen supply, and up to 3% of the annual new marine biological production.[10] It has been suggested that accumulating reactive nitrogen in the environment may prove as serious as putting carbon dioxide in the atmosphere.[11]
Terrestrial ecosystems
Terrestrial ecosystems are subject to similarly adverse impacts from eutrophication.[12] Increased nitrates in soil are frequently undesirable for plants. Many terrestrial plant species are endangered as a result of soil eutrophication, such as the majority of orchid species in Europe.[13] Meadows, forests, and bogs are characterized by low nutrient content and slowly growing species adapted to those levels, so they can be overgrown by faster growing and more competitive species. In meadows, tall grasses that can take advantage of higher nitrogen levels may change the area so that natural species may be lost. Species-rich fens can be overtaken by reed or reedgrass species. Forest undergrowth affected by run-off from a nearby fertilized field can be turned into a nettle and bramble thicket.
Chemical forms of nitrogen are most often of concern with regard to eutrophication, because plants have high nitrogen requirements so that additions of nitrogen compounds will stimulate plant growth. Nitrogen is not readily available in soil because N2, a gaseous form of nitrogen, is very stable and unavailable directly to higher plants. Terrestrial ecosystems rely on microbial nitrogen fixation to convert N2 into other forms such as nitrates. However, there is a limit to how much nitrogen can be utilized. Ecosystems receiving more nitrogen than the plants require are called nitrogen-saturated. Saturated terrestrial ecosystems then can contribute both inorganic and organic nitrogen to freshwater, coastal, and marine eutrophication, where nitrogen is also typically a limiting nutrient.[14] This is also the case with increased levels of phosphorus. However, because phosphorus is generally much less soluble than nitrogen, it is leached from the soil at a much slower rate than nitrogen. Consequently, phosphorus is much more important as a limiting nutrient in aquatic systems.[15]
Ecological effects
Many ecological effects can arise from stimulating primary production, but there are three particularly troubling ecological impacts: decreased biodiversity, changes in species composition and dominance, and toxicity effects.
- Increased biomass of phytoplankton
- Toxic or inedible phytoplankton species
- Increases in blooms of gelatinous zooplankton
- Decreased biomass of benthic and epiphytic algae
- Changes in macrophyte species composition and biomass
- Decreases in water transparency (increased turbidity)
- Colour, smell, and water treatment problems
- Dissolved oxygen depletion
- Increased incidences of fish kills
- Loss of desirable fish species
- Reductions in harvestable fish and shellfish
- Decreases in perceived aesthetic value of the water body
Decreased biodiversity
When an ecosystem experiences an increase in nutrients, primary producers reap the benefits first. In aquatic ecosystems, species such as algae experience a population increase (called an algal bloom). Algal blooms limit the sunlight available to bottom-dwelling organisms and cause wide swings in the amount of dissolved oxygen in the water. Oxygen is required by all aerobically respiring plants and animals and it is replenished in daylight by photosynthesizing plants and algae. Under eutrophic conditions, dissolved oxygen greatly increases during the day, but is greatly reduced after dark by the respiring algae and by microorganisms that feed on the increasing mass of dead algae. When dissolved oxygen levels decline to hypoxic levels, fish and other marine animals suffocate. As a result, creatures such as fish, shrimp, and especially immobile bottom dwellers die off.[16] In extreme cases, anaerobic conditions ensue, promoting growth of bacteria such as Clostridium botulinum that produces toxins deadly to birds and mammals. Zones where this occurs are known as dead zones.
New species invasion
Eutrophication may cause competitive release by making abundant a normally limiting nutrient. This process causes shifts in the species composition of ecosystems. For instance, an increase in nitrogen might allow new, competitive species to invade and out-compete original inhabitant species. This has been shown to occur[17] in New England salt marshes.
Toxicity
Some algal blooms, otherwise called "nuisance algae" or "harmful algal blooms", are toxic to plants and animals. Toxic compounds they produce can make their way up the food chain, resulting in animal mortality.[18] Freshwater algal blooms can pose a threat to livestock. When the algae die or are eaten, neuro- and hepatotoxins are released which can kill animals and may pose a threat to humans.[19][20] An example of algal toxins working their way into humans is the case of shellfish poisoning.[21] Biotoxins created during algal blooms are taken up by shellfish (mussels, oysters), leading to these human foods acquiring the toxicity and poisoning humans. Examples include paralytic, neurotoxic, and diarrhoetic shellfish poisoning. Other marine animals can be vectors for such toxins, as in the case of ciguatera, where it is typically a predator fish that accumulates the toxin and then poisons humans.
Sources of high nutrient runoff
Characteristics of point and nonpoint sources of chemical inputs ([8] modified from Novonty and Olem 1994) Point sources - Wastewater effluent (municipal and industrial)
- Runoff and leachate from waste disposal systems
- Runoff and infiltration from animal feedlots
- Runoff from mines, oil fields, unsewered industrial sites
- Overflows of combined storm and sanitary sewers
- Runoff from construction sites less than 20,000 m² (220,000 ft²)
- Untreated sewage
Nonpoint sources- Runoff from agriculture/irrigation
- Runoff from pasture and range
- Urban runoff from unsewered areas
- Septic tank leachate
- Runoff from construction sites >20,000 m²
- Runoff from abandoned mines
- Atmospheric deposition over a water surface
- Other land activities generating contaminants
In order to gauge how to best prevent eutrophication from occurring, specific sources that contribute to nutrient loading must be identified. There are two common sources of nutrients and organic matter: point and nonpoint sources.
Point sources
Point sources are directly attributable to one influence. In point sources the nutrient waste travels directly from source to water. Point sources are relatively easy to regulate.
Nonpoint sources
Nonpoint source pollution (also known as 'diffuse' or 'runoff' pollution) is that which comes from ill-defined and diffuse sources. Nonpoint sources are difficult to regulate and usually vary spatially and temporally (with season, precipitation, and other irregular events).
It has been shown that nitrogen transport is correlated with various indices of human activity in watersheds,[22][23] including the amount of development.[17] Ploughing in Agriculture and development are activities that contribute most to nutrient loading. There are three reasons that nonpoint sources are especially troublesome:[15]
Soil retention
Nutrients from human activities tend to accumulate in soils and remain there for years. It has been shown[24] that the amount of phosphorus lost to surface waters increases linearly with the amount of phosphorus in the soil. Thus much of the nutrient loading in soil eventually makes its way to water. Nitrogen, similarly, has a turnover time of decades or more.
Runoff to surface water and leaching to groundwater
Nutrients from human activities tend to travel from land to either surface or ground water. Nitrogen in particular is removed through storm drains, sewage pipes, and other forms of surface runoff. Nutrient losses in runoff and leachate are often associated with agriculture. Modern agriculture often involves the application of nutrients onto fields in order to maximise production. However, farmers frequently apply more nutrients than are taken up by crops[25] or pastures. Regulations aimed at minimising nutrient exports from agriculture are typically far less stringent than those placed on sewage treatment plants[8] and other point source polluters.
Atmospheric deposition
Nitrogen is released into the air because of ammonia volatilization and nitrous oxide production. The combustion of fossil fuels is a large human-initiated contributor to atmospheric nitrogen pollution. Atmospheric deposition (e.g., in the form of acid rain) can also affect nutrient concentration in water,[26] especially in highly industrialized regions.
Other causes
Any factor that causes increased nutrient concentrations can potentially lead to eutrophication. In modeling eutrophication, the rate of water renewal plays a critical role; stagnant water is allowed to collect more nutrients than bodies with replenished water supplies. It has also been shown that the drying of wetlands causes an increase in nutrient concentration and subsequent eutrophication blooms.[27]
Prevention and reversal
Eutrophication poses a problem not only to ecosystems, but to humans as well. Reducing eutrophication should be a key concern when considering future policy, and a sustainable solution for everyone, including farmers and ranchers, seems feasible. While eutrophication does pose problems, humans should be aware that natural runoff (which causes algal blooms in the wild) is common in ecosystems and should thus not reverse nutrient concentrations beyond normal levels.
Effectiveness
Cleanup measures have been mostly, but not completely, successful. Finnish phosphorus removal measures started in the mid-1970s and have targeted rivers and lakes polluted by industrial and municipal discharges. These efforts have had a 90% removal efficiency.[28] Still, some targeted point sources did not show a decrease in runoff despite reduction efforts.
Minimizing nonpoint pollution: future work
Nonpoint pollution is the most difficult source of nutrients to manage. The literature suggests, though, that when these sources are controlled, eutrophication decreases. The following steps are recommended to minimize the amount of pollution that can enter aquatic ecosystems from ambiguous sources.
Riparian buffer zones
Studies show that intercepting non-point pollution between the source and the water is a successful means of prevention.[8] Riparian buffer zones are interfaces between a flowing body of water and land, and have been created near waterways in an attempt to filter pollutants; sediment and nutrients are deposited here instead of in water. Creating buffer zones near farms and roads is another possible way to prevent nutrients from traveling too far. Still, studies have shown[29] that the effects of atmospheric nitrogen pollution can reach far past the buffer zone. This suggests that the most effective means of prevention is from the primary source.
Prevention policy
Laws regulating the discharge and treatment of sewage have led to dramatic nutrient reductions to surrounding ecosystems,[15] but it is generally agreed that a policy regulating agricultural use of fertilizer and animal waste must be imposed. In Japan the amount of nitrogen produced by livestock is adequate to serve the fertilizer needs for the agriculture industry.[30] Thus, it is not unreasonable to command livestock owners to clean up animal waste—which when left stagnant will leach into ground water.
Policy concerning the prevention and reduction of eutrophication can be broken down into four sectors: Technologies, public participation, economic instruments, and cooperation.[31] The term technology is used loosely, referring to a more widespread use of existing methods rather than an appropriation of new technologies. As mentioned before, nonpoint sources of pollution are the primary contributors to eutrophication, and their effects can be easily minimized through common agricultural practices. Reducing the amount of pollutants that reach a watershed can be achieved through the protection of its forest cover, reducing the amount of erosion leeching into a watershed. Also, through the efficient, controlled use of land using sustainable agricultural practices to minimize land degradation, the amount of soil runoff and nitrogen-based fertilizers reaching a watershed can be reduced.[32] Waste disposal technology constitutes another factor in eutrophication prevention. Because a major contributor to the nonpoint source nutrient loading of water bodies is untreated domestic sewage, it is necessary to provide treatment facilities to highly urbanized areas, particularly those in underdeveloped nations, in which treatment of domestic waste water is a scarcity.[33] The technology to safely and efficiently reuse waste water, both from domestic and industrial sources, should be a primary concern for policy regarding eutrophication.
The role of the public is a major factor for the effective prevention of eutrophication. In order for a policy to have any effect, the public must be aware of their contribution to the problem, and ways in which they can reduce their effects. Programs instituted to promote participation in the recycling and elimination of wastes, as well as education on the issue of rational water use are necessary to protect water quality within urbanized areas and adjacent water bodies.
Economic instruments, “which include, among others, property rights, water markets, fiscal and financial instruments, charge systems and liability systems, are gradually becoming a substantive component of the management tool set used for pollution control and water allocation decisions."[31] Incentives for those who practice clean, renewable, water management technologies are an effective means of encouraging pollution prevention. By internalizing the costs associated with the negative effects on the environment, governments are able to encourage a cleaner water management.
Because a body of water can have an effect on a range of people reaching far beyond that of the watershed, cooperation between different organizations is necessary to prevent the intrusion of contaminants that can lead to eutrophication. Agencies ranging from state governments to those of water resource management and non-governmental organizations, going as low as the local population, are responsible for preventing eutrophication of water bodies.
Nitrogen testing and modeling
Soil Nitrogen Testing (N-Testing) is a technique that helps farmers optimize the amount of fertilizer applied to crops. By testing fields with this method, farmers saw a decrease in fertilizer application costs, a decrease in nitrogen lost to surrounding sources, or both.[34] By testing the soil and modeling the bare minimum amount of fertilizer needed, farmers reap economic benefits while reducing pollution.
Organic farming
There has been a study that found that organically fertilized fields "significantly reduce harmful nitrate leaching" over conventionally fertilized fields.[35] However, a more recent study found that eutrophication impacts are in some cases higher from organic production than they are from conventional production.[36]
See also
- Algal blooms
- Anaerobic digestion
- Auxanography
- Biodilution
- Biogeochemical cycle
- Coastal fish
- Drainage basin
- Freshwater ecology
- Hypoxia (environmental)
- Lentic ecosystem
- Limnology
- Nitrogen cycle
- No-till farming
- Outwelling
- Phosphorus cycle
- Riparian zone
- Lake Erie
References
- ^ Over fertilization of the World's Freshwaters and Estuaries. University of Alberta Press. p. 1.
- ^ Bartram, J., Wayne W. Carmichael, Ingrid Chorus, Gary Jones, and Olav M. Skulberg. 1999. Chapter 1. Introduction, In: Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. World Health Organization. URL: WHO document
- ^ Rodhe, W. 1969 Crystallization of eutrophication concepts in North Europe. In: Eutrophication, Causes, Consequences, Correctives. National Academy of Sciences, Washington D.C., Standard Book Number 309-01700-9, 50-64.
- ^ ILEC/Lake Biwa Research Institute [Eds]. 1988-1993 Survey of the State of the World's Lakes. Volumes I-IV. International Lake Environment Committee, Otsu and United Nations Environment Programme, Nairobi.
- ^ Walker, I. R. 2006. Chironomid overview. pp.360-366 in S.A. EIias (ed.) Encyclopedia of Quaternary Science, Vo1. 1, Elsevier,
- ^ Whiteside. M. C. 1983. The mythical concept of eutrophication. Hydrobiologia 103, 107-111.
- ^ "Barotse Floodplain, Zambia: local economic dependence on wetland resources." Case Studies in Wetland Valuation #2: IUCN, May 2003.
- ^ a b c d Carpenter, S.R., N.F. Caraco, and V.H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8:559-568.
- ^ Selman, Mindy (2007) Eutrophication: An Overview of Status, Trends, Policies, and Strategies. World Resources Institute.
- ^ Duce, R A and 29 others (2008) Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean Science. Vol 320, pp 893–89
- ^ Addressing the nitrogen cascade Eureka Alert, 2008.
- ^ APIS. 2005. Website: Air Pollution Information System Eutrophication
- ^ Pullin, Andrew S. (2002). Conservation biology. Cambridge University Press. ISBN 0-521-64482-8.
- ^ Hornung M., Sutton M.A. and Wilson R.B. [Eds.] (1995): Mapping and modelling of critical loads for nitrogen - a workshop report. Grange-over-Sands, Cumbria, UK. UN-ECE Convention on Long Range Transboundary Air Pollution, Working Group for Effects, 24–26 October 1994. Published by: Institute of Terrestrial Ecology, Edinburgh, UK.
- ^ a b c Smith, V.H.; G.D. Tilman, and J.C. Nekola (1999). "Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems". Environmental Pollution 100 (1–3): 179–196. doi:10.1016/S0269-7491(99)00091-3. PMID 15093117.
- ^ Horrigan, L.; R. S. Lawrence, and P. Walker (2002). "How sustainable agriculture can address the environmental and human health harms of industrial agriculture". Environmental health perspectives 110 (5): 445–456. doi:10.1289/ehp.02110445. PMC 1240832. PMID 12003747. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1240832.
- ^ a b Bertness et al. 2001
- ^ Anderson D.M. 1994. Red tides. Scientific American 271:62-68.
- ^ Lawton, L.A.; G.A. Codd (1991). "Cyanobacterial (blue-green algae) toxins and their significance in UK and European waters". Journal of Soil and Water Conservation 40: 87–97.
- ^ Martin, A.; G.D. Cooke (1994). "Health risks in eutrophic water supplies". Lake Line 14: 24–26.
- ^ Shumway, S.E. (1990). "A review of the effects of algal blooms on shellfish and aquaculture". Journal of the World Aquaculture Society 21 (2): 65–104. doi:10.1111/j.1749-7345.1990.tb00529.x.
- ^ Cole J.J., B.L. Peierls, N.F. Caraco, and M.L. Pace. (1993). Nitrogen loading of rivers as a human-driven process. Pages 141-157 in M.J. McDonnell and S.T.A. Pickett, editors. Humans as components of ecosystems. Springer-Verlag, New York, New York, USA.
- ^ Howarth R.W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J.A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, and Zhu Zhao-liang. 1996. Regional nitrogen budgets and riverine inputs of N and P for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75-139.
- ^ Sharpley A.N., T.C. Daniel, J.T. Sims, and D.H. Pote. 1996. Determining environmentally sound soil phosphorus levels. Journal of Soil and Water Conservation 51:160-166.
- ^ Buol S. W. 1995. Sustainability of Soil Use. Annual Review of Ecology and Systematics 26:25-44.
- ^ Paerl H. W. 1997. Coastal Eutrophication and Harmful Algal Blooms: Importance of Atmospheric Deposition and Groundwater as "New" Nitrogen and Other Nutrient Sources. Limnology and Oceanography 42:1154-1165.
- ^ Mungall C. and D.J. McLaren. 1991. Planet under stress: the challenge of global change. Oxford University Press, New York, New York, USA.
- ^ Raimammake A., O.P. Pietilainen, S. Rekolainen, P. Kauppila, H. Pitkanen, J. Niemi, A. Raateland, J. Vuorenmaa. 2003. Trends of phosphorus, nitrogen, and chlorophyll a concentrations in Finnish rivers and lakes in 1975-2000. The Science of the Total Environment 310:47-59.
- ^ Angold P. G. 1997. The Impact of a Road Upon Adjacent Heathland Vegetation: Effects on Plant Species Composition. The Journal of Applied Ecology 34:409-417.
- ^ Kumazawa K. 2002. Nitrogen fertilization and nitrate pollution in groundwater in Japan: Present status and measures for sustainable agriculture. Nutrient Cycling in Agroecosystems 63:129-137.
- ^ a b "Planning and Management of Lakes and Reservoirs: An Integrated Approach to Eutrophication." United Nations Environment Programme, Newsletter and Technical Publications. International Environmental Technology Centre. Ch.3.4.
- ^ Control of Eutrophication. R. T. Oglesby and W. T. Edmondson. Journal (Water Pollution Control Federation), Vol. 38, No. 9 (Sep., 1966), pp. 1452-1460
- ^ Eutrophication of Surface Water: Lake Tahoe. E. J. Middlebrooks, E. A. Pearson, M. Tunzi, A. Adinarayana, P. H. McGauhey and G. A. Rohlich. Journal (Water Pollution Control Federation), Vol. 43, No. 2 (Feb., 1971), pp. 242-251
- ^ Huang W. Y., Y. C. Lu, and N. D. Uri. 2001. An assessment of soil nitrogen testing considering the carry-over effect. Applied Mathematical Modelling 25:843-860.
- ^ Kramer, S. B. (2006). "Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils". Proceedings of the National Academy of Sciences 103 (12): 4522–4527. Bibcode 2006PNAS..103.4522K. doi:10.1073/pnas.0600359103. PMC 1450204. PMID 16537377. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1450204.
- ^ Williams, A.G., Audsley, E. and Sandars, D.L. (2006) Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main Report. Defra Research Project IS0205. Bedford: Cranfield University and Defra.
External links
Marine pollution - Algal bloom
- Anoxic event
- Anoxic waters
- Aquatic toxicology
- Cultural eutrophication
- Cyanotoxin
- Environmental impact of shipping
- Eutrophication
- Fish diseases and parasites
- Fish kill
- Friendly Floatees
- Great Pacific Garbage Patch
- Hypoxia
- Invasive species
- Marine debris
- Mercury in fish
- Nonpoint source pollution
- North Atlantic Garbage Patch
- Nutrient pollution
- Ocean acidification
- Ocean deoxygenation
- Oil spill
- Particle
- Plastic particle water pollution
- Point source pollution
- Shutdown of thermohaline circulation
- Stormwater
- Surface runoff
- Upwelling
- Urban runoff
- Water pollution
Pollution Air pollution Acid rain · Air quality (Indoor) · Atmospheric dispersion modeling · Chlorofluorocarbon · Global dimming · Global distillation · Global warming · Ozone depletion · Particulates · SmogWater pollution Environmental impact of pharmaceuticals and personal care products · Environmental impact of shipping · Environmental monitoring · Eutrophication · Freshwater environmental quality parameters · Hypoxia · Marine debris · Marine pollution · Ocean acidification · Oil spill · Surface runoff · Thermal pollution · Urban runoff · Wastewater · Water quality · Water stagnation · Waterborne diseasesSoil contamination Bioremediation · Phytoremediation · Electrical resistance heating · Herbicide · Pesticide · Soil Guideline Values (SGVs)Radioactive contamination Actinides in the environment · Environmental radioactivity · Fission product · Nuclear fallout · Plutonium in the environment · Radiation poisoning · Radium in the environment · Uranium in the environmentOther types of pollution Inter-government treaties Major organizations DEFRA · Environment Agency (England and Wales) · Scottish Environment Protection Agency (Scotland) · U.S. EPA · EEA · GreenpeaceCategories:- Water pollution
- Environmental chemistry
- Environmental soil science
- Limnology
- Lakes
- Physical geography
- Fisheries
- Environmental issues with water
- Greek loanwords
Wikimedia Foundation. 2010.