- Thermal pollution
Thermal pollution is a
temperature change in natural bodies of water caused by human influence. The temperature change can be upwards or downwards. In the Northern Hemisphere, a common cause ofthermal pollution is the use of water as acoolant , especially inpower plants . Water used as a coolant is returned to the natural environment at a higher temperature. Increase in water temperature can impact on aquatic organisms by (a) decreasingoxygen supply, (b) killing fish juveniles which are vulnerable to small fluctuations in temperature, and (c) affectingecosystem composition. In the Southern Hemisphere, thermal pollution is commonly caused by the release of very cold water from the base of reservoirs, with severe affects on fish (particularly eggs and larvae), macroinvertebrates and river productivity.Ecological effects — warm water
Warm water typically decreases the level of dissolved oxygen in the water. The decrease in levels of
dissolved oxygen can harm aquatic animals such as fish,amphibians andcopepods . Thermal pollution may also increase themetabolic rate of aquatic animals, asenzyme activity, resulting in these organisms consuming more food in a shorter time than if their environment were not changed. An increased metabolic rate may result in food source shortages, causing a sharp decrease in a population. Changes in the environment may also result in a migration of organisms to another, more suitable environment, and to in-migration of organisms that normally onlie live in warmer waters elsewhere. This leads to competition for fewer resources; the more adapted organisms moving in may have an advantage over organisms that are not used to the warmer temperature. As a result one has the problem of compromisingfood chain s of the old and new environments.Biodiversity can be decreased as a result.It is known that temperature changes of even one to two degrees
Celsius can cause significant changes in organism metabolism and other adversecellular biology effects. Principal adverse changes can include rendering cell walls less permeable to necessaryosmosis , coagulation of cellprotein s, and alteration ofenzyme metabolism . These cellular level effects can adversely affect mortality andreproduction .Primary producer s are affected by warm water because higher water temperature increases plant growth rates, resulting in a shorter lifespan and species overpopulation. This can cause analgae bloom which reduces the oxygen levels in the water. The higher plant density leads to an increased plantrespiration rate because the reduced light intensity decreasesphotosynthesis . This is similar to theeutrophication that occurs when watercourses are polluted with leached agricultural inorganic fertilizers.A large increase in temperature can lead to the denaturing of life-supporting enzymes by breaking down hydrogen- and
disulphide bond s within the quaternary structure of the enzymes. Decreased enzyme activity in aquatic organisms can cause problems such as the inability to break downlipids , which leads tomalnutrition .In limited cases, warm water has little deleterious effect and may even lead to improved function of the receiving aquatic ecosystem. This phenomenon is seen especially in seasonal waters and is known as thermal enrichment. An extreme case is derived from the aggregational habits of the
manatee , which often uses power plant discharge sites during winter. Projections suggest that manatee populations would decline upon the removal of these discharges.The added heat lowers the dissolved oxygen content and may cause serious problems for the plants and animals living there. In extreme cases, major fish kills can result. Warm water may also increase the metabolic rate of aquatic animals, as enzyme activity, meaning that these organisms will consume more food in a shorter time than if their environment was not changed. The temperature can be as high as 70 degrees farenhiet for freshwater, 80 degrees farenhiet for saltwater, and 85 degrees farenhiet for tropical fish.
Ecological effects — cold water
Releases of unnaturally cold water from reservoirs can dramatically change the fish and macro invertebrate fauna of rivers, and reduce river productivity. In Australia, where many rivers have warmer temperature regimes, native fish species have been eliminated, and macro invertebrate faunas have been drastically altered and impoverished. The temperatures for freshwater fish can be as low as 50 degrees farenhiet, saltwater 75 degrees farenhiet, and Tropical 80 degrees farenhiet.
Computer modeling of thermal pollution
In the 1970s there was considerable activity from scientists in quantifying effects of thermal pollution.
Hydrologist s,physicist s,meteorologist s, andcomputer scientist s combined their skills in one of the firstinterdisciplinary pursuits of the modernenvironmental science era.First came the application ofgaussian function dispersal modeling that forecasts how a thermal plume is formed from a thermal point source and predicts the distribution of aquatic temperatures.The ultimate model was developed by the U.S. Environmental Protection Agency introducing the statistical variations in meteorology to predict the resulting plume from a thermaloutfall .References
* Michael Hogan, Leda C. Patmore and Harry Seidman, "Statistical Prediction of DynamicThermal Equilibrium Temperature s using StandardMeteorological Data Bases", U.S. Environmental Protection Agency Office of Research and Development EPA-660/2-73-003, August, 1973
*E.L. Thackston andF.L. Parker , "Effect of Geographical Location on Cooling Pond Requirements"Vanderbilt University , for Water Quality Office, U.S. Environmental Protection Agency, Project no. 16130 FDQ, March 1971
*
* Edward A. Laws, "Aquatic Pollution: An Introductory Text",John Wiley and Sons (2000) ISBN 0-471-34875-9
Wikimedia Foundation. 2010.