Cytochrome P450, family 1, member A1

Cytochrome P450, family 1, member A1
Cytochrome P450, family 1, subfamily A, polypeptide 1
Identifiers
Symbols CYP1A1; AHH; AHRR; CP11; CYP1; P1-450; P450-C; P450DX
External IDs OMIM108330 MGI88588 HomoloGene68062 GeneCards: CYP1A1 Gene
EC number 1.14.14.1
RNA expression pattern
PBB GE CYP1A1 205749 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 1543 13076
Ensembl ENSG00000140465 ENSMUSG00000032315
UniProt P04798 Q05A20
RefSeq (mRNA) NM_000499.3 XM_972645
RefSeq (protein) NP_000490.1 XP_977739
Location (UCSC) Chr 15:
75.01 – 75.02 Mb
Chr 9:
57.55 – 57.55 Mb
PubMed search [1] [2]

Cytochrome P450, family 1, subfamily A, polypeptide 1 is a protein[1] that in humans is encoded by the CYP1A1 gene.[2] The protein is a member of the cytochrome P450 superfamily of enzymes.[3]

Contents

Function

CYP1A1 is involved in phase I xenobiotic and drug metabolism (one substrate of it is theophylline). It is inhibited by fluoroquinolones and macrolides and induced by aromatic hydrocarbons.[4]

CYP1A1 is also known as AHH (aryl hydrocarbon hydroxylase). It is involved in the metabolic activation of aromatic hydrocarbons (polycyclic aromatic hydrocarbons, PAH), for example, benzopyrene (BP), by transforming it to an epoxide. In this reaction, the oxidation of benzo[a]pyrene is catalysed by CYP1A1 to form BP-7,8-epoxide, which can be further oxidized by epoxide hydrolase (EH) to form BP-7,8-dihydrodiol. Finally CYP1A1 catalyses this intermediate to form BP-7,8-dihydrodiol-9,10-epoxide, which is the ultimate carcinogen.[4]

Regulation

The expression of the CYP1A1 and CYP1B1 genes are regulated by the aryl hydrocarbon receptor, a ligand activated transcription factor.[5]

Polymorphisms

Several polymorphisms have been identified in CYP1A1, some of which lead to more highly inducible AHH activity. CYP1A1 polymorphisms include:[6][7][8][9]

  • M1, TC substitution at nucleotide 3801 in the 3'-non-coding region
  • M2, AG substitution at nucleotide 2455 leading to an amino acid change of isoleucine to valine at codon 462
  • M3, TC substitution at nucleotide 3205 in the 3'-non-coding region
  • M4, CA substitution at nucleotide 2453 leading to an amino acid change of threonine to asparagine at codon 461

The highly inducible forms of CYP1A1 are associated with an increased risk of lung cancer in smokers. (Reference = Kellerman et al, New Eng J Med 1973:289;934-937) Light smokers with the susceptible genotype CYP1A1 have a sevenfold higher risk of developing lung cancer compared to light smokers with the normal genotype.


References

  1. ^ Kawajiri K (1999). "CYP1A1". IARC Scientific Publications (148): 159–72. PMID 10493257. 
  2. ^ Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004). "Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants". Pharmacogenetics 14 (1): 1–18. doi:10.1097/00008571-200401000-00001. PMID 15128046. http://meta.wkhealth.com/pt/pt-core/template-journal/lwwgateway/media/landingpage.htm?issn=0960-314X&volume=14&issue=1&spage=1. 
  3. ^ Smith G, Stubbins MJ, Harries LW, Wolf CR (1998). "Molecular genetics of the human cytochrome P450 monooxygenase superfamily". Xenobiotica 28 (12): 1129–65. doi:10.1080/004982598238868. PMID 9890157. 
  4. ^ a b Beresford AP (1993). "CYP1A1: friend or foe?". Drug Metabolism Reviews 25 (4): 503–17. doi:10.3109/03602539308993984. PMID 8313840. 
  5. ^ Ma Q, Lu AY (2007). "CYP1A induction and human risk assessment: an evolving tale of in vitro and in vivo studies". Drug Metabolism and Disposition 35 (7): 1009–16. doi:10.1124/dmd.107.015826. PMID 17431034. 
  6. ^ Petersen DD, McKinney CE, Ikeya K, Smith HH, Bale AE, McBride OW, Nebert DW (1991). "Human CYP1A1 gene: cosegregation of the enzyme inducibility phenotype and an RFLP". American Journal of Human Genetics 48 (4): 720–5. PMC 1682951. PMID 1707592. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1682951. 
  7. ^ Cosma G, Crofts F, Taioli E, Toniolo P, Garte S (1993). "Relationship between genotype and function of the human CYP1A1 gene". Journal of Toxicology and Environmental Health 40 (2-3): 309–16. doi:10.1080/15287399309531796. PMID 7901425. 
  8. ^ Crofts F, Taioli E, Trachman J, Cosma GN, Currie D, Toniolo P, Garte SJ (1994). "Functional significance of different human CYP1A1 genotypes". Carcinogenesis 15 (12): 2961–3. doi:10.1093/carcin/15.12.2961. PMID 8001264. http://carcin.oxfordjournals.org/cgi/content/abstract/15/12/2961. 
  9. ^ Kiyohara C, Hirohata T, Inutsuka S (1996). "The relationship between aryl hydrocarbon hydroxylase and polymorphisms of the CYP1A1 gene". Japanese Journal of Cancer Research 87 (1): 18–24. PMID 8609043. 

Further reading