- Primase
-
DNA primase is an enzyme involved in the replication of DNA.
Primase catalyzes the synthesis of a short RNA (or DNA in some organisms [1]) segment called a primer complementary to a ssDNA template. Primase is of key importance in DNA replication because no known DNA polymerases can initiate the synthesis of a DNA strand without an initial RNA or DNA primer (for temporary DNA elongation).
Contents
Function
In bacteria, primase binds to the DNA helicase forming a complex called the primosome. Primase is activated by DNA helicase where it then synthesizes a short RNA primer approximately 11 ±1 nucleotides long, to which new nucleotides can be added by DNA polymerase.
The RNA segments are first elongated by DNA polymerase and then synthesized by primase.[2] Then the DNA polymerase forms a protein complex with two primase subunits to form the alpha DNA Polymerase primase complex. Primase is one of the most error prone and slow polymerases.[2] Primases in organisms such as E. coli, synthesize around 2000 to 3000 primers at the rate of one primer per second.[3] Primase also acts as a halting mechanism to prevent the leading strand from outpacing the lagging strand by halting the progression of the replication fork.[4] The rate determining step in primase is when the first phosphodiester bond is formed with the ssDNA.[2] The crystal structure of primase in E. coli with core that contained the DnaG protein was determined in 2000.[3] The DnaG and primase complex is cashew shaped and contains three subdomains.[3] The central subdomain forms a toprim fold which is made of a mixture five beta sheets and six alpha helices.[3] The toprim fold is used for binding regulators and metals. The primase uses a phosphotransfer domain for the transfer coordination of metals, which makes it distinct from other polymerases.[3] The side subunits contain a NH2 and COOH terminal made of made of alpha helixes and beta sheets.[3] The NH2 terminal interacts with a zinc binding domain and COOH-terminal region which interacts with DnaB-ID.[3] The replications mechanisms differ between different bacteria and viruses where the primase covalently link to helicase in viruses such as the T7 bacterialphage.[4] In viruses such as herpes simplex virus (HSV-1), primase can form complexes with helicase.[5] The primase-helicase complex is used to unwind dsDNA and synthesizes the lagging strand using RNA primers[5] The majority of primers synthesized by primase are two to three nucleotides long.[5]
Types
External links
- Overview article on primase structure and function (1995)
- MeSH DNA+Primase
- Freesciencelectures.com: DNA Replication Process
- Proteopedia: Helicase-binding domain of Escherichia coli primase
- Proteopedia: Complex between the DnaB helicase and the DnaG primase
References
- ^ Bocquier, Arnaud A. (2001). "Archaeal primase". Current biology 11 (6): 452-456.
- ^ a b c Griep, Mark A. (1995). "Primase Structure and Function". Indian Journal of Biochemistry & Biophysics 32 (4): 171–8. PMID 8655184.
- ^ a b c d e f g Keck, James L. , and Daniel D. Roche, A. Simon Lynch, James M. Berger. (2000). "Structure of the RNA Polymerase Domain of E. coli Primase". Science 282 (5462): 2482–6. doi:10.1126/science.287.5462.2482. PMID 10741967.
- ^ a b Lee, Jong-Bong , and Richard K. Hite, Samir M. Hamdan, et. al. (2006). "DNA primase acts as a molecular brake in DNA replication". Nature 436 (7076): 621–624. doi:10.1038/nature04317. PMID 16452983.
- ^ a b c Cavanaugh, Nisha A., and Robert D. Kuchta (2009). "Initiation of New DNA Strands by the Herpes Simplex Virus-1 Primase-Helicase Complex and Either Herpes DNA Polymerase or Human DNA Polymerase alpha". J. Biol. Chem. 284 (3): 1523–1532. doi:10.1074/jbc.M805476200. PMC 2615532. PMID 19028696. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2615532.
Transferases: phosphorus-containing groups (EC 2.7) 2.7.1-2.7.4:
phosphotransferase/kinase
(PO4)Hexo- · Gluco- · Fructo- (Hepatic) · Galacto- · Phosphofructo- (1, Liver, Muscle, Platelet, 2) · Riboflavin · Shikimate · Thymidine (ADP-thymidine) · NAD+ · Glycerol · Pantothenate · Mevalonate · Pyruvate · Deoxycytidine · PFP · Diacylglycerol · Phosphoinositide 3 (Class I PI 3, Class II PI 3) · Sphingosine · Glucose-1,6-bisphosphate synthase2.7.2: COOH acceptor2.7.6: diphosphotransferase
(P2O7)2.7.7: nucleotidyltransferase
(PO4-nucleoside)DNA-directed DNA polymerase: DNA polymerase I · DNA polymerase II · DNA polymerase III holoenzyme
DNA nucleotidylexotransferase/Terminal deoxynucleotidyl transferase
RNA-directed DNA polymerase: Reverse transcriptase (Telomerase)RNA nucleotidyltransferaseRNA polymerase/DNA-directed RNA polymerase: RNA polymerase I · RNA polymerase II · RNA polymerase III · RNA polymerase IV · Primase · RNA-dependent RNA polymerase
PNPaseUridylyltransferaseGlucose-1-phosphate uridylyltransferase · Galactose-1-phosphate uridylyltransferaseGuanylyltransferasemRNA capping enzymeOther2.7.8: miscellaneous PhosphatidyltransferasesCDP-diacylglycerol—glycerol-3-phosphate 3-phosphatidyltransferase · CDP-diacylglycerol—serine O-phosphatidyltransferase · CDP-diacylglycerol—inositol 3-phosphatidyltransferase · CDP-diacylglycerol—choline O-phosphatidyltransferaseGlycosyl-1-phosphotransferase2.7.10-2.7.13: protein kinase
(PO4; protein acceptor)see tyrosine kinasessee serine/threonine-specific protein kinases2.7.12: protein-dual-specificitysee serine/threonine-specific protein kinases2.7.13: protein-histidineB enzm: 1.1/2/3/4/5/6/7/8/10/11/13/14/15-18, 2.1/2/3/4/5/6/7/8, 2.7.10, 2.7.11-12, 3.1/2/3/4/5/6/7, 3.1.3.48, 3.4.21/22/23/24, 4.1/2/3/4/5/6, 5.1/2/3/4/99, 6.1-3/4/5-6 Categories:- EC 2.7.7
- DNA replication
Wikimedia Foundation. 2010.