- Nucleotidyltransferase
-
Nucleotidyltransferases are transferase enzymes of phosphorus-containing groups, e.g., substituents of nucleotidylic acids or simply nucleoside monophosphates. The general reaction of transferring a nucleoside monophosphate moiety from A to B, can be written as:
- A-P-N + B A + B-P-N
For example, in the case of polymerases, A is pyrophosphate and B is the nascent polynucleotide. They are classified under EC number 2.7.7 and they can be categorised into:
- Uridylyltransferases, which transfer uridylyl- groups
- Adenylyltransferases, which transfer adenylyl- groups
- Guanylyltransferases, which transfer guanylyl- groups
- Cytitidylyltransferases, which transfer cytidylyl- groups
- Thymidylyltransferases, which transfer thymidylyl- groups
Role DNA repair mechanisms
Nucleotidyl transferase is a component of the repair pathway for single nucleotide base excision repair. This repair mechanism begins when a single nucleotide is recognized by DNA glycosylase as incorrectly matched or has been mutated in some way (UV light, chemical mutagen, etc.), and is removed. Later, a nucleotidyl tranferase is used to fill in the gap with the correct base, using the template strand as the reference. [1]
References
- ^ Yuan Liu, Rajendra Prasad, William A. Beard, Padmini S. Kedar, Esther W. Hou, David D. Shock, and Samuel H. Wilson (May 4 2007). "Coordination of Steps in Single-nucleotide Base Excision Repair Mediated by Apurinic/Apyrimidinic Endonuclease 1 and DNA Polymerase beta.". Journal of Biological Chemistry 282 (18): 13532–13541. doi:10.1074/jbc.M611295200. PMC 2366199. PMID 17355977. http://www.jbc.org/content/282/18/13532.full.pdf+html. "The enzymes and accessory factors involved in the BER subpathways in mammalian cells have received considerable attention. As summarized above, five distinct enzymatic reaction are involved during SN-BER. These are 1) removal of a modified base by a lesion-specific monofunctional DNA N-glycosylase, 2) 5'-incision of the abasic site by a hydrolytic strand incision enzyme, 3) DNA synthesis by a nucleotidyltransferase, 4) removal of the 5'-dRP group by a'-elimination reaction, and 5) nick sealing by DNA ligase (36, 37)"
External links
Transferases: phosphorus-containing groups (EC 2.7) 2.7.1-2.7.4:
phosphotransferase/kinase
(PO4)Hexo- · Gluco- · Fructo- (Hepatic) · Galacto- · Phosphofructo- (1, Liver, Muscle, Platelet, 2) · Riboflavin · Shikimate · Thymidine (ADP-thymidine) · NAD+ · Glycerol · Pantothenate · Mevalonate · Pyruvate · Deoxycytidine · PFP · Diacylglycerol · Phosphoinositide 3 (Class I PI 3, Class II PI 3) · Sphingosine · Glucose-1,6-bisphosphate synthase2.7.2: COOH acceptor2.7.6: diphosphotransferase
(P2O7)2.7.7: nucleotidyltransferase
(PO4-nucleoside)DNA-directed DNA polymerase: DNA polymerase I · DNA polymerase II · DNA polymerase III holoenzyme
DNA nucleotidylexotransferase/Terminal deoxynucleotidyl transferase
RNA-directed DNA polymerase: Reverse transcriptase (Telomerase)RNA nucleotidyltransferaseRNA polymerase/DNA-directed RNA polymerase: RNA polymerase I · RNA polymerase II · RNA polymerase III · RNA polymerase IV · Primase · RNA-dependent RNA polymerase
PNPaseUridylyltransferaseGlucose-1-phosphate uridylyltransferase · Galactose-1-phosphate uridylyltransferaseGuanylyltransferasemRNA capping enzymeOther2.7.8: miscellaneous PhosphatidyltransferasesCDP-diacylglycerol—glycerol-3-phosphate 3-phosphatidyltransferase · CDP-diacylglycerol—serine O-phosphatidyltransferase · CDP-diacylglycerol—inositol 3-phosphatidyltransferase · CDP-diacylglycerol—choline O-phosphatidyltransferaseGlycosyl-1-phosphotransferase2.7.10-2.7.13: protein kinase
(PO4; protein acceptor)see tyrosine kinasessee serine/threonine-specific protein kinases2.7.12: protein-dual-specificitysee serine/threonine-specific protein kinases2.7.13: protein-histidineThis transferase article is a stub. You can help Wikipedia by expanding it.