- X-linked adrenal hypoplasia congenita
-
X-linked adrenal hypoplasia congenita Classification and external resources OMIM 300200 DiseasesDB 32988 X-linked adrenal hypoplasia congenita is a genetic disorder[1] that mainly affects males. It involves many endocrine tissues in the body, especially the adrenal glands.
Contents
Presentation
One of the main characteristics of this disorder is adrenal insufficiency, which is a reduction in adrenal gland function resulting from incomplete development of the gland's outer layer (the adrenal cortex). Adrenal insufficiency typically begins in infancy or in childhood and can cause vomiting, difficulty with feeding, dehydration, extremely low blood sugar (hypoglycemia), and shock. However, adult-onset cases have also been described.[2]
Affected males may also lack male sex hormones, which leads to underdeveloped reproductive tissues, undescended testicles (cryptorchidism), delayed puberty, and an inability to father children (infertility). These characteristics are known as hypogonadotropic hypogonadism. Females are rarely affected by this disorder, but a few cases have been reported of adrenal insufficiency or a lack of female sex hormones, resulting in underdeveloped reproductive tissues, delayed puberty, and an absence of menstruation.
Genetics
Mutations in the NR0B1 gene located on the X chromosome (Xp21.3-p21.2) cause X-linked adrenal hypoplasia congenita. The NR0B1 gene provides instructions to make a transcription factor protein called DAX1 that helps control the activity of certain genes. When the NR0B1 gene is deleted or mutated, the activity of certain genes is not properly controlled. This leads to problems with the development of the adrenal glands, two structures in the brain (the hypothalamus and pituitary gland), and reproductive tissues (the ovaries or testes). These tissues are important for the production of many hormones that control various functions in the body. When these hormones are not present in the correct amounts, the signs and symptoms of adrenal insufficiency and hypogonadotropic hypogonadism can result. This condition is inherited in an X-linked recessive pattern.
References
- ^ Domenice S, Latronico AC, Brito VN, Arnhold IJ, Kok F, Mendonca BB (September 2001). "Adrenocorticotropin-dependent precocious puberty of testicular origin in a boy with X-linked adrenal hypoplasia congenita due to a novel mutation in the DAX1 gene". J. Clin. Endocrinol. Metab. 86 (9): 4068–71. doi:10.1210/jc.86.9.4068. PMID 11549627. http://jcem.endojournals.org/cgi/pmidlookup?view=long&pmid=11549627.
- ^ Tabarin A, Achermann JC, Recan D, Bex V, Bertagna X, Christin-Maitre S, Ito M, Jameson JL, Bouchard P (February 2000). "A novel mutation in DAX1 causes delayed-onset adrenal insufficiency and incomplete hypogonadotropic hypogonadism". J. Clin. Invest. 105 (3): 321–8. doi:10.1172/JCI7212. PMC 377437. PMID 10675358. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=377437.
External links
- GeneReviews/NCBI/NIH/UW entry on X-Linked Adrenal Hypoplasia Congenita
- Inherited Adrenal Hypoplasia: Not Just for Kids!: X-linked Adrenal Hypoplasia Congenita - MedScape
This article incorporates public domain text from The U.S. National Library of Medicine
Genetic disorder, protein biosynthesis: Transcription factor/coregulator deficiencies (1) Basic domains 1.2: Feingold syndrome · Saethre-Chotzen syndrome
1.3: Tietz syndrome(2) Zinc finger
DNA-binding domains2.1 (Intracellular receptor): Thyroid hormone resistance · Androgen insensitivity syndrome (PAIS, MAIS, CAIS) · Kennedy's disease · PHA1AD pseudohypoaldosteronism · Estrogen insensitivity syndrome · X-linked adrenal hypoplasia congenita · MODY 1 · Familial partial lipodystrophy 3 · SF1 XY gonadal dysgenesis
2.2: Barakat syndrome · Tricho–rhino–phalangeal syndrome
2.3: Greig cephalopolysyndactyly syndrome/Pallister-Hall syndrome · Denys–Drash syndrome · Duane-radial ray syndrome · MODY 7 · MRX 89 · Townes–Brocks syndrome · Acrocallosal syndrome · Myotonic dystrophy 2
2.5: Autoimmune polyendocrine syndrome type 1(3) Helix-turn-helix domains 3.1: ARX (Ohtahara syndrome, Lissencephaly X2) · HLXB9 (Currarino syndrome) · HOXD13 (SPD1 Synpolydactyly) · IPF1 (MODY 4) · LMX1B (Nail–patella syndrome) · MSX1 (Tooth and nail syndrome, OFC5) · PITX2 (Axenfeld syndrome 1) · POU4F3 (DFNA15) · POU3F4 (DFNX2) · ZEB1 (Posterior polymorphous corneal dystrophy 3, Fuchs' dystrophy 3) · ZEB2 (Mowat-Wilson syndrome)
3.2: PAX2 (Papillorenal syndrome) · PAX3 (Waardenburg syndrome 1&3) · PAX4 (MODY 9) · PAX6 (Gillespie syndrome, Coloboma of optic nerve) · PAX8 (Congenital hypothyroidism 2) · PAX9 (STHAG3)
3.3: FOXC1 (Axenfeld syndrome 3, Iridogoniodysgenesis, dominant type) · FOXC2 (Lymphedema–distichiasis syndrome) · FOXE1 (Bamforth–Lazarus syndrome) · FOXE3 (Anterior segment mesenchymal dysgenesis) · FOXF1 (ACD/MPV) · FOXI1 (Enlarged vestibular aqueduct) · FOXL2 (Premature ovarian failure 3) · FOXP3 (IPEX)
3.5: IRF6 (Van der Woude syndrome, Popliteal pterygium syndrome)(4) β-Scaffold factors
with minor groove contacts4.2: Hyperimmunoglobulin E syndrome
4.3: Holt-Oram syndrome · Li-Fraumeni syndrome · Ulnar–mammary syndrome
4.7: Campomelic dysplasia · MODY 3 · MODY 5 · SF1 (SRY XY gonadal dysgenesis, Premature ovarian failure 7) · SOX10 (Waardenburg syndrome 4c, Yemenite deaf-blind hypopigmentation syndrome)
4.11: Cleidocranial dysostosis(0) Other transcription factors 0.6: Kabuki syndromeUngrouped Transcription coregulators Categories:- Transcription factor deficiencies
Wikimedia Foundation. 2010.