Water crisis

Water crisis
Deforestation of the Madagascar Highland Plateau has led to extensive siltation and unstable flows of western rivers.

Water crisis is a general term used to describe a situation where the available water within a region is less than the region's demand. The term has been used to describe the availability of potable water in a variety of regions by the United Nations and other world organizations.[1][2] Others, for example the Food and Agriculture Organization, said in 2003 that there is no water crisis but steps must be taken to avoid one in the future.[3] The major aspects of the water crisis are allegedly overall scarcity of usable water[4] and water pollution.



According to Nature (2010), about 80% of the world's population (5.6 billion in 2011) live in areas with threats to water security. The water security is a shared threat to human and nature and it is pandemic. Human water-management strategies can affect detrimentally to wildlife, such as migrating fish. Regions with intensive agriculture and dense population, as the US and Europe, have high threat to water security. The researcher estimate that during 2010-2015, ca US$800 billion will be required to cover the annual global investment in water infrastructure. Good management of water resources can jointly manage biodiversity protection and human water security. Preserving flood plains rather than constructing flood-control reservoirs would provide a cost-effective way to control floods while protecting the biodiversity of wildlife that occupies such areas.[5]

The New York Times article, “Southeast Drought Study Ties Water Shortage to Population, Not Global Warming”, summarizes the findings of Columbia University researcher on the subject of the droughts in the southwest between 2005 and 2007. The findings were published in the Journal of Climate. They say the water shortages resulted from population size more than rainfall. Census figures show that Georgia’s population rose to 9.54 million from 6.48 million between 1990 and 2007.[6] After studying data from weather instruments, computer models and measurements of tree rings which reflect rainfall, they found that the droughts were not unprecedented and result from normal climate patterns and random weather events. “Similar droughts unfolded over the last thousand years, the researchers wrote. Regardless of climate change, they added, similar weather patterns can be expected regularly in the future, with similar results.”[6] As the temperature increases, rainfall in the Southeast will increase but because of evaporation the area may get even drier. The researchers concluded with a statement saying that any rainfall comes from complicated internal processes in the atmosphere that are very hard to predict because of the large amount of variables.

Lawrence Smith, the president of the population institute, asserts that although an overwhelming majority of the planet is composed of water, 97% of this water is constituted of saltwater; the fresh water used to sustain humans is only 3% of the total amount of water on Earth (Hoevel). Therefore, Smith believes that the competition for water in an overpopulated world would pose a major threat to human stability (Hoevel); indeed, world wars may be fought over the control of thinning ice sheets and nearly desiccated reservoirs.[7] 2 billion people have gained access to a safe water source since 1990.[8] The proportion of people in developing countries with access to safe water is calculated to have improved from 30 percent in 1970[9] to 71 percent in 1990, 79 percent in 2000 and 84 percent in 2004, parallel with rising population. This trend is projected to continue.[8]

The Earth has a limited supply of fresh water, stored in aquifers, surface waters and the atmosphere. Sometimes oceans are mistaken for available water, but the amount of energy needed to convert saline water to potable water is prohibitive today, explaining why only a very small fraction of the world's water supply derives from desalination.[10]


There are several principal manifestations of the water crisis.

Waterborne diseases and the absence of sanitary domestic water are one of the leading causes of death worldwide. For children under age five, waterborne diseases are the leading cause of death. At any given time, half of the world's hospital beds are occupied by patients suffering from waterborne diseases.[14] According to the World Bank, 88 percent of all waterborne diseases are caused by unsafe drinking water, inadequate sanitation and poor hygiene.[15]

Water is the underlying tenuous balance of safe water supply, but controllable factors such as the management and distribution of the water supply itself contribute to further scarcity.

A 2006 United Nations report focuses on issues of governance as the core of the water crisis, saying "There is enough water for everyone" and "Water insufficiency is often due to mismanagement, corruption, lack of appropriate institutions, bureaucratic inertia and a shortage of investment in both human capacity and physical infrastructure".[16] Official data also shows a clear correlation between access to safe water and GDP per capita.[17]

It has also been claimed, primarily by economists, that the water situation has occurred because of a lack of property rights, government regulations and subsidies in the water sector, causing prices to be too low and consumption too high.[18][19][20]

Vegetation and wildlife are fundamentally dependent upon adequate freshwater resources. Marshes, bogs and riparian zones are more obviously dependent upon sustainable water supply, but forests and other upland ecosystems are equally at risk of significant productivity changes as water availability is diminished. In the case of wetlands, considerable area has been simply taken from wildlife use to feed and house the expanding human population. But other areas have suffered reduced productivity from gradual diminishing of freshwater inflow, as upstream sources are diverted for human use. In seven states of the U.S. over 80 percent of all historic wetlands were filled by the 1980s, when Congress acted to create a “no net loss” of wetlands.

In Europe extensive loss of wetlands has also occurred with resulting loss of biodiversity. For example many bogs in Scotland have been developed or diminished through human population expansion. One example is the Portlethen Moss in Aberdeenshire.

On Madagascar’s highland plateau, a massive transformation occurred that eliminated virtually all the heavily forested vegetation in the period 1970 to 2000. The slash and burn agriculture eliminated about ten percent of the total country’s native biomass and converted it to a barren wasteland. These effects were from overpopulation and the necessity to feed poor indigenous peoples, but the adverse effects included widespread gully erosion that in turn produced heavily silted rivers that “run red” decades after the deforestation. This eliminated a large amount of usable fresh water and also destroyed much of the riverine ecosystems of several large west-flowing rivers. Several fish species have been driven to the edge of extinction and some, such as, the disturbed Tokios, coral reef formations in the Indian Ocean are effectively lost.

In October 2008, Peter Brabeck-Letmathe, chairman and former chief executive of Nestlé, warned that the production of biofuels will further deplete the world's water supply.

Overview of regions suffering crisis impacts

Two abandoned ships in the former Aral Sea, near Aral, Kazakhstan.

There are many other countries of the world that are severely impacted with regard to human health and inadequate drinking water. The following is a partial list of some of the countries with significant populations (numerical population of affected population listed) whose only consumption is of contaminated water:[21]

Several world maps showing various aspects of the problem can be found in this graph article.[22]

According to the California Department of Water Resources, if more supplies aren’t found by 2020, the region will face a shortfall nearly as great as the amount consumed today. Los Angeles is a coastal desert able to support at most 1 million people on its own water; the Los Angeles basin now is the core of a megacity that spans 220 miles (350 km) from Santa Barbara to the Mexican border. The region’s population is expected to reach 41 million by 2020, up from 28 million in 2009. The population of California continues to grow by more than two million a year and is expected to reach 75 million in 2030, up from 49 million in 2009. But water shortage is likely to surface well before then.[23]

Water deficits, which are already spurring heavy grain imports in numerous smaller countries, may soon do the same in larger countries, such as China and India.[24] The water tables are falling in scores of countries (including Northern China, the US, and India) due to widespread overpumping using powerful diesel and electric pumps. Other countries affected include Pakistan, Iran, and Mexico. This will eventually lead to water scarcity and cutbacks in grain harvest. Even with the overpumping of its aquifers, China is developing a grain deficit. When this happens, it will almost certainly drive grain prices upward. Most of the 3 billion people projected to be added worldwide by mid-century will be born in countries already experiencing water shortages. Unless population growth can be slowed quickly it is feared that there may not be a practical non-violent or humane solution to the emerging world water shortage.[25][26][27]

After China and India, there is a second tier of smaller countries with large water deficits — Algeria, Egypt, Iran, Mexico, and Pakistan. Four of these already import a large share of their grain. But with a population expanding by 4 million a year, it will also likely soon turn to the world market for grain.[28]

According to a UN climate report, the Himalayan glaciers that are the sources of Asia's biggest rivers - Ganges, Indus, Brahmaputra, Yangtze, Mekong, Salween and Yellow - could disappear by 2035 as temperatures rise.[29] It was later revealed that the source used by the UN climate report actually stated 2350, not 2035.[30] Approximately 2.4 billion people live in the drainage basin of the Himalayan rivers.[31] India, China, Pakistan, Bangladesh, Nepal and Myanmar could experience floods followed by droughts in coming decades. In India alone, the Ganges provides water for drinking and farming for more than 500 million people.[32][33][34] The west coast of North America, which gets much of its water from glaciers in mountain ranges such as the Rocky Mountains and Sierra Nevada, also would be affected.[35][36]

By far the largest part of Australia is desert or semi-arid lands commonly known as the outback. In June 2008 it became known that an expert panel had warned of long term, possibly irreversible, severe ecological damage for the whole Murray-Darling basin if it does not receive sufficient water by October.[37] Water restrictions are currently in place in many regions and cities of Australia in response to chronic shortages resulting from drought. The Australian of the year 2007, environmentalist Tim Flannery, predicted that unless it made drastic changes, Perth in Western Australia could become the world’s first ghost metropolis, an abandoned city with no more water to sustain its population.[38] However, Western Australia's dams reached 50% capacity for the first time since 2000 as of September 2009.[39] As a result, heavy rains have brought forth positive results for the region.[39] Nonetheless, the following year, 2010, Perth suffered its second-driest winter on record[40] and the water corporation tightened water restrictions for spring.[41]

Effects on climate

Aquifer drawdown or overdrafting and the pumping of fossil water increases the total amount of water within the hydrosphere subject to transpiration and evaporation processes, thereby causing accretion in water vapour and cloud cover, the primary absorbers of infrared radiation in the earth's atmosphere. Adding water to the system has a forcing effect on the whole earth system, an accurate estimate of which hydrogeological fact is yet to be quantified.


Wind and solar power such as this installation in a village in northwest Madagascar can make a difference in safe water supply.

Construction of wastewater treatment plants and reduction of groundwater overdrafting appear to be obvious solutions to the worldwide problem; however, a deeper look reveals more fundamental issues in play. Wastewater treatment is highly capital intensive, restricting access to this technology in some regions; furthermore the rapid increase in population of many countries makes this a race that is difficult to win. As if those factors are not daunting enough, one must consider the enormous costs and skill sets involved to maintain wastewater treatment plants even if they are successfully developed.

Reduction in groundwater overdrafting is usually politically very unpopular and has major economic impacts to farmers; moreover, this strategy will necessarily reduce crop output, which is something the world can ill-afford, given the population level at present.

At more realistic levels, developing countries can strive to achieve primary wastewater treatment or secure septic systems, and carefully analyse wastewater outfall design to minimise impacts to drinking water and to ecosystems. Developed countries can not only share technology better, including cost-effective wastewater and water treatment systems but also in hydrological transport modeling. At the individual level, people in developed countries can look inward and reduce overconsumption, which further strains worldwide water consumption. Both developed and developing countries can increase protection of ecosystems, especially wetlands and riparian zones. These measures will not only conserve biota, but also render more effective the natural water cycle flushing and transport that make water systems more healthy for humans.

A range of local, low-tech solutions are being pursued by a number of companies. These efforts center around the use of solar power to distill water at temperatures slightly beneath that at which water boils. By developing the capability to purify any available water source, local business models could be built around the new technologies, accelerating their uptake.[42]

Conventional Fossil or Nuclear Energy Based Desalination

As new technological innovations continue to reduce the capital cost of desalination, more countries are building desalination plants as a small element in addressing their water crises.[43]

  • Israel desalinizes water for a cost of 53 cents per cubic meter [44]
  • Singapore desalinizes water for 49 cents per cubic meter [45] and also treats sewage with reverse osmosis for industrial and potable use (NEWater).
  • China and India, the world's two most populous countries, are turning to desalination to provide a small part of their water needs [46][47]
  • In 2007 Pakistan announced plans to use desalination [48]
  • All Australian capital cities (except Darwin, Northern Territory and Hobart) are either in the process of building desalination plants, or are already using them. In late 2011, Melbourne will begin using Australia's largest desalination plant, the Wonthaggi desalination plant to raise low reservoir levels.
  • In 2007 Bermuda signed a contract to purchase a desalination plant [49]
  • The largest desalination plant in the United States is the one at Tampa Bay, Florida, which began desalinizing 25 million gallons (95000 m³) of water per day in December 2007.[50] In the United States, the cost of desalination is $3.06 for 1,000 gallons, or 81 cents per cubic meter.[51] In the United States, California, Arizona, Texas, and Florida use desalination for a very small part of their water supply.[52][53][54]
  • After being desalinized at Jubail, Saudi Arabia, water is pumped 200 miles (320 km) inland though a pipeline to the capital city of Riyadh.[55]

A January 17, 2008, article in the Wall Street Journal states, "World-wide, 13,080 desalination plants produce more than 12 billion gallons of water a day, according to the International Desalination Association." [56]

The world's largest desalination plant is the Jebel Ali Desalination Plant (Phase 2) in the United Arab Emirates. It is a dual-purpose facility that uses multi-stage flash distillation and is capable of producing 300 million cubic meters of water per year.[57]

A typical aircraft carrier in the U.S. military uses nuclear power to desalinize 400,000 US gallons (1,500,000 L) of water per day.[58]

While desalinizing 1,000 US gallons (3,800 L) of water can cost as much as $3, the same amount of bottled water costs $7,945.[59]

However, given the energy intensive nature of desalination, with associated economic and environmental costs, desalination is generally considered a last resort after water conservation. But this is changing as prices continue to fall.

Picture show, due to record less rain in Summer 2005, and resulting to drought occurred in Sameura Dam, which one of water supplies to Takamatsu, Shikoku Island, Japan

According to MSNBC, a report by Lux Research estimated that the worldwide desalinated water supply will triple between 2008 and 2020.[60]

However, not everyone is convinced that desalination is or will be economically viable or environmentally sustainable for the foreseeable future. Debbie Cook, the former mayor of Huntington Beach, California, has been a frequent critic of desalination proposals ever since she was appointed as a member of the California Desalination Task Force. Cook claims that in addition to being energy intensive, desalination schemes are very costly—often much more costly than desalination proponents claim. In her writing on the subject, Cook points to a long list of projects that have stalled or been aborted for financial or other reasons, and suggests that water-stressed regions would do better to focus on conservation or other water supply solutions than to invest in desalination plants.[61]

Solar Energy Based Desalination

A novel approach to desalination is the Seawater Greenhouse which takes seawater and uses solar energy to desalinate it in conjunction with growing food crops in a specially adapted greenhouse.

Global experiences in managing water crisis

It is alleged that the likelihood of conflict rises if the rate of change within the basin exceeds the capacity of institution to absorb that change.[35] Although water crisis is closely related to regional tensions, history showed that acute conflicts over water are far less than the record of cooperation.

The key lies in strong institutions and cooperation. The Indus River Commission and the Indus Water Treaty survived two wars between India and Pakistan despite their hostility, proving to be a successful mechanism in resolving conflicts by providing a framework for consultation inspection and exchange of data. The Mekong Committee has also functioned since 1957 and survived the Vietnam War. In contrast, regional instability results when there is an absence of institutions to co-operate in regional collaboration, like Egypt’s plan for a high dam on the Nile. However, there is currently no global institution in place for the management and management of trans-boundary water sources, and international co-operation has happened through ad hoc collaborations between agencies, like the Mekong Committee which was formed due to an alliance between UNICEF and the US Bureau of Reclamation. Formation of strong international institutions seems to be a way forward - they fuel early intervention and management, preventing the costly dispute resolution process.

One common feature of almost all resolved disputes is that the negotiations had a “need-based” instead of a “right–based” paradigm. Irrigable lands, population, technicalities of projects define "needs". The success of a need-based paradigm is reflected in the only water agreement ever negotiated in the Jordan River Basin, which focuses in needs not on rights of riparians. In the Indian subcontinent, irrigation requirements of Bangladesh determine water allocations of The Ganges River. A need based, regional approach focuses on satisfying individuals with their need of water, ensuring that minimum quantitative needs are being met. It removes the conflict that arises when countries view the treaty from a national interest point of view, move away from the zero-sum approach to a positive sum, integrative approach that equitably allocated the water and its benefits.

See also


  1. ^ "United Nations statement on water crisis". Un.org. 2006-02-20. http://www.un.org/apps/news/story.asp?NewsID=17551&Cr=&Cr1. Retrieved 2011-03-10. 
  2. ^ UN World Summit on Sustainable Development addresses the water crisis[dead link]
  3. ^ "No global water crisis - but may developing countries will face water scarcity", FAO.org 12 March 2003
  4. ^ Freshwater: lifeblood of the planet[dead link]
  5. ^ Balancing water supply and wildlife Nature online 29 September 2010
  6. ^ a b http://www.nytimes.com/2009/10/02/science/earth/02drought.html NYTimes 2009 - Columbia University
  7. ^ Hoevel, Ann (April 8, 2008). "Overpopulation could be people, planet problem". CNN. http://www.cnn.com/2007/TECH/science/09/25/overpopulation.overview/index.html. Retrieved 2010-07-20. 
  8. ^ a b "The Millennium Development Goals Report, 2008". United Nations. http://mdgs.un.org/unsd/mdg/Resources/Static/Products/Progress2008/MDG_Report_2008_En.pdf#page=44. 
  9. ^ Björn Lomborg (2001). The Skeptical Environmentalist. Cambridge University Press. p. 22. ISBN 0521010683. http://www.lomborg.com/dyn/files/basic_items/69-file/skeptenvironChap1.pdf. 
  10. ^ World Energy Outlook 2005: Middle East and North Africa Insights. International Energy Agency, Paris. 2005. 
  11. ^ Progress in Drinking-water and Sanitation: special focus on sanitation. WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation. July 17, 2008. p. 25. http://www.unicef.org/media/files/Joint_Monitoring_Report_-_17_July_2008.pdf. 
  12. ^ "Updated Numbers: WHO-UNICEF JMP Report 2008". Unicef.org. http://www.unicef.org/media/media_44093.html. Retrieved 2011-03-10. 
  13. ^ "Water is Life - Groundwater drawdown". Academic.evergreen.edu. http://academic.evergreen.edu/g/grossmaz/WORMKA/. Retrieved 2011-03-10. 
  14. ^ WaterPartners International: Learn about the Water Crisis
  15. ^ "All About: Water and Health". CNN. December 18, 2007. http://edition.cnn.com/2007/WORLD/asiapcf/12/17/eco.about.water/. 
  16. ^ Water, a shared responsibility. The United Nations World Water Development Report 2, 2006
  17. ^ "Public Services""]. Gapminder video. http://www.gapminder.org/videos/gapcasts/gapcast-9-public-services/. 
  18. ^ Fredrik Segerfeldt (2005), "Private Water Saves Lives", Financial Times 25 August
  19. ^ David Zetland, "Running Out of Water"
  20. ^ David Zetland, "Water Crisis"
  21. ^ http://www.unicef.org/specialsession/about/sgreport-pdf/03_SafeDrinkingWater_D7341Insert_English.pdf
  22. ^ "Looming water crisis simply a management problem" by Jonathan Chenoweth, New Scientist 28 Aug., 2008, pp. 28-32.
  23. ^ "U.S. Water Supply". Fairus.org. http://www.fairus.org/site/PageServer?pagename=iic_immigrationissuecenters19af. Retrieved 2011-03-10. 
  24. ^ Jul 21, 2006 (2006-07-21). "India grows a grain crisis". Atimes.com. http://www.atimes.com/atimes/South_Asia/HG21Df01.html. Retrieved 2011-03-10. 
  25. ^ "Water Scarcity Crossing National Borders". Earth-policy.org. 2006-09-27. http://www.earth-policy.org/Books/Seg/PB2ch03_ss6.htm. Retrieved 2011-03-10. 
  26. ^ Water Shortages May Cause Food Shortages
  27. ^ Yemen's Capital Facing Water Shortage Due to Rapid Increase in Population[dead link]
  28. ^ "The Food Bubble Economy". I-sis.org.uk. 2002-04-12. http://www.i-sis.org.uk/TFBE.php. Retrieved 2011-03-10. 
  29. ^ "Vanishing Himalayan Glaciers Threaten a Billion". Planetark.com. 2007-06-05. http://www.planetark.com/dailynewsstory.cfm/newsid/42387/story.htm. Retrieved 2011-03-10. 
  30. ^ Bagla, Pallava (December 5, 2009). "Himalayan glaciers melting deadline 'a mistake'". BBC. http://news.bbc.co.uk/2/hi/south_asia/8387737.stm. Retrieved 2009-12-12. 
  31. ^ Big melt threatens millions, says UN[dead link]
  32. ^ "Ganges, Indus may not survive: climatologists". Rediff.com. 2004-12-31. http://www.rediff.com/news/2007/jul/24indus.htm. Retrieved 2011-03-10. 
  33. ^ english@peopledaily.com.cn (2007-07-24). "Glaciers melting at alarming speed". English.peopledaily.com.cn. http://english.peopledaily.com.cn/90001/90781/90879/6222327.html. Retrieved 2011-03-10. 
  34. ^ Singh, Navin (2004-11-10). "Himalaya glaciers melt unnoticed". BBC News. http://news.bbc.co.uk/2/hi/science/nature/3998967.stm. Retrieved 2011-03-10. 
  35. ^ a b "Glaciers Are Melting Faster Than Expected, UN Reports". Sciencedaily.com. 2008-03-18. http://www.sciencedaily.com/releases/2008/03/080317154235.htm. Retrieved 2011-03-10. 
  36. ^ Water shortage worst in decades, official says, Los Angeles Times
  37. ^ Australian rivers 'face disaster', BBC News
  38. ^ Metropolis strives to meet its thirst, BBC News
  39. ^ a b "Dams at record levels". ABC News. 2009-09-15. http://www.abc.net.au/news/stories/2009/09/15/2686535.htm. Retrieved 2009-09-25. 
  40. ^ "More winter blues as rainfall dries up". ABC News. 2010-08-31. http://www.abc.net.au/news/stories/2010/08/31/2998259.htm?site=perth. Retrieved 2011-01-13. 
  41. ^ "Saving water in spring". Water corporation (Western Australia). 2010-09-23. http://www.watercorporation.com.au/m/media_detail.cfm?id=3656. Retrieved 2011-01-13. 
  42. ^ Tapping A Market CNBC European Business, October 2008
  43. ^ [1][dead link]
  44. ^ "EJP | News | France | French-run water plant launched in Israel". Ejpress.org. 2005-12-28. http://www.ejpress.org/article/4873. Retrieved 2010-08-13. 
  45. ^ "Black & Veatch-Designed Desalination Plant Wins Global Water Distinction". Edie.net. 2006-05-04. http://www.edie.net/news/news_story.asp?id=11402&channel=0. Retrieved 2010-08-13. 
  46. ^ "Drought hopes hinge on desalination - World - NZ Herald News". Nzherald.co.nz. 2006-11-01. http://www.nzherald.co.nz/section/2/story.cfm?c_id=2&objectid=10408553. Retrieved 2010-08-13. 
  47. ^ "Tamil Nadu / Chennai News : Two sites for desalination plant identified". Chennai, India: The Hindu. 2007-01-17. http://www.hindu.com/2007/01/17/stories/2007011719260300.htm. Retrieved 2010-08-13. 
  48. ^ http://www.world-nuclear-news.org/newNuclear/190107Pakistan_embarks_on_nuclear_desalination.shtml
  49. ^ "Bermuda signs contract for seawater desalination plant". Caribbean Net News. 2007-01-20. http://www.caribbeannetnews.com/cgi-script/csArticles/articles/000052/005273.htm. Retrieved 2010-08-13. 
  50. ^ Applause, At Last, For Desalination Plant, The Tampa Tribune, December 22, 2007
  51. ^ Desalination gets a serious look, Las Vegas Sun, March 21, 2008
  52. ^ "Carlsbad Desalination Project". Carlsbaddesal.com. 2006-07-27. http://www.carlsbaddesal.com/. Retrieved 2011-03-10. 
  53. ^ By RANDAL C. ARCHIBOLD and KIRK JOHNSON; Randal C. Archibold reported from Yuma, Ariz., and Kirk Johnson from Denver. (2007-04-04). "No Longer Waiting for Rain, an Arid West Takes Action". Western States (US); Utah; Arizona; California; Colorado; Nevada; New Mexico; Wyoming; Montana; Colorado River; Las Vegas (Nev); Yuma (Ariz): Select.nytimes.com. http://select.nytimes.com/gst/abstract.html?res=FB0714FE3D5B0C778CDDAD0894DF404482. Retrieved 2011-03-10. 
  54. ^ "Technology news and new technology highlights from New Scientist - New Scientist Tech - New Scientist". New Scientist Tech. http://www.newscientisttech.com/channel/tech/mg19125586.100.html. Retrieved 2010-08-13. 
  55. ^ Desalination is the Solution to Water Shortages, redOrbit, May 2, 2008
  56. ^ Water, Water, Everywhere..., The Wall. St Journal, January 17, 2008
  57. ^ "100 Largest Desalination Plants Planned, in Construction, or in Operation—January 1, 2005" (PDF). http://www.worldwater.org/data20062007/Table21.pdf. Retrieved 2011-03-10. 
  58. ^ Harris, Tom (2002-08-29). "How Aircraft Carriers Work". Science.howstuffworks.com. http://science.howstuffworks.com/aircraft-carrier2.htm. Retrieved 2011-03-10. 
  59. ^ The Arid West—Where Water Is Scarce - Desalination—a Growing Watersupply Source, Library Index
  60. ^ A Rising Tide for New Desalinated Water Technologies, MSNBC, March. 17, 2009
  61. ^ Desalination: Unlocking Lessons from Yesterday’s Solution (part 1), Water Matters, January 17, 2009


An International Food Policy Research Institute book about the intersection of water policy, globalization and food security: Ringler, C., Biswas, A., and Cline, S., eds. 2010. Global Change: Impacts on Water and Food Security. Heidelberg: Springer.

External links

Wikimedia Foundation. 2010.

Нужно решить контрольную?

Look at other dictionaries:

  • WATER CRISIS In THE MIDDLE EAST AND NORTH AFRICA — ▪ 1998 Introduction by Peter Rogers  Water availability has for millennia shaped the culture of the people in the part of the world now commonly referred to as the Middle East and North Africa. This huge region extends from the Maghreb,… …   Universalium

  • Chinese water crisis — A dry river near Beijing, China. July 2007 The Chinese water crisis threatens the stability and prosperity not only in People s Republic of China but globally as well, according to John McAlister from the film Aquabiotronics.[1] According to the… …   Wikipedia

  • China water crisis — The China water crisis threatens the stability and prosperity not only in People s Republic of China but globally too, according to John McAlister from the firm Aquabiotronics. [ [http://www.cbiz.cn/download/aquabio.pdf China s Water Crisis] (a… …   Wikipedia

  • 1998 Sydney water crisis — The 1998 Sydney water crisis involved the supposed contamination of Sydney s main water supply, the Warragamba Dam, by the microscopic pathogens cryptosporidium and giardia between July and September 1998. Low levels of cryptosporidium and… …   Wikipedia

  • World Water Crisis: Is There a Way Out? — ▪ 2004 Introduction by Peter RogersOf all the social and natural crises we humans face, the water crisis is the one that lies at the heart of our survival and that of our planet Earth.  Such was the dismal state of the world s water supply, as… …   Universalium

  • 1998 Klang Valley water crisis — The 1998 Klang Valley water crisis occurred in Malaysia in February 1998 when the three reservoir dams in Klang Valley, Klang Gates Dam, Batu Dam and Semenyih Dam suffered a substantial drop in water level following the El Niño phenomenon. The… …   Wikipedia

  • Water supply and sanitation in Israel — is intricately linked to the historical development of Israel in the context of scarce water resources. Because the coastal plain of historical Palestine had few water resources, Theodor Herzl already envisioned the transfer of water from the… …   Wikipedia

  • Water privatization — is a short hand for private sector participation in the provision of water services and sanitation, although more rarely it refers to privatization of water resources themselves. Because water services are seen as such a key public service,… …   Wikipedia

  • Water conflict — Water war redirects here. For the type of mock combat, see Water fight. Water conflict is a term describing a conflict between countries, states, or groups over an access to water resources.[1][2][3] The United Nations recognizes that water… …   Wikipedia

  • Water supply and sanitation in Yemen — is characterized by poor service quality and low levels of access, the latter being almost as low as in Sub Saharan Africa for sanitation. Yemen is both the poorest country and the most water scarce country in the Arab world. In addition, the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”