# Dirac comb

Dirac comb
A Dirac comb is an infinite series of Dirac delta functions spaced at intervals of T

In mathematics, a Dirac comb (also known as an impulse train and sampling function in electrical engineering) is a periodic Schwartz distribution constructed from Dirac delta functions

$\Delta_T(t) \ \stackrel{\mathrm{def}}{=}\ \sum_{k=-\infty}^{\infty} \delta(t - k T)$

for some given period T. Some authors, notably Bracewell as well as some textbook authors in electrical engineering and circuit theory, refer to it as the Shah function (possibly because its graph resembles the shape of the Cyrillic letter sha Ш). Because the Dirac comb function is periodic, it can be represented as a Fourier series:

$\Delta_T(t) = \frac{1}{T}\sum_{n=-\infty}^{\infty} e^{i 2 \pi n t/T}.$

## Scaling property

The scaling property follows directly from the properties of the Dirac delta function

$\sum_{k=-\infty}^{\infty} \delta(t - k T) = |\alpha|\cdot \sum_{k=-\infty}^{\infty} \delta\bigg(\alpha\cdot (t - k T)\bigg).$

## Fourier series

It is clear that ΔT(t) is periodic with period T. That is

$\Delta_T(t+T) = \Delta_T(t)\,$

for all t. The complex Fourier series for such a periodic function is

$\Delta_T(t) = \sum_{n=-\infty}^{+\infty} c_n e^{i 2 \pi n t/T} \$

where the Fourier coefficients, cn are

 $c_n\,$ $= \frac{1}{T} \int_{t_0}^{t_0 + T} \Delta_T(t) e^{-i 2 \pi n t/T}\, dt \quad ( -\infty < t_0 < +\infty ) \$ $= \frac{1}{T} \int_{-T/2}^{T/2} \Delta_T(t) e^{-i 2 \pi n t/T}\, dt \$ $= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-i 2 \pi n t/T}\, dt \$ $= \frac{1}{T} e^{-i 2 \pi n \, 0/T} \$ $= \frac{1}{T}. \$

All Fourier coefficients are 1/T resulting in

$\Delta_T(t) = \frac{1}{T}\sum_{n=-\infty}^{\infty} e^{i 2 \pi n t/T}.$

## Fourier transform

The Fourier transform of a Dirac comb is also a Dirac comb.

Unitary transform to ordinary frequency domain (Hz):

$\sum_{n=-\infty}^{\infty} \delta(t - n T) \quad \stackrel{\mathcal{F}}{\longleftrightarrow}\quad {1\over T}\sum_{k=-\infty}^{\infty} \delta \left( f - {k\over T} \right) \quad = \sum_{n=-\infty}^{\infty} e^{-i2\pi fnT}.$

Unitary transform to angular frequency domain (radian/s):

$\sum_{n=-\infty}^{\infty} \delta (t - n T) \quad \stackrel{\mathcal{F}}{\longleftrightarrow}\quad \frac{\sqrt{2\pi }}{T} \sum_{k=-\infty}^{\infty} \delta \left( \omega -k \frac{2\pi }{T}\right) \quad = \frac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty} e^{-i\omega nT}. \,$

## Sampling and aliasing

Reconstruction of a continuous signal from samples taken at sampling interval T is done by some sort of interpolation, such as the Whittaker–Shannon interpolation formula. Mathematically, that process is often modelled as the output of a lowpass filter whose input is a Dirac comb whose teeth have been weighted by the sample values. Such a comb is equivalent to the product of a comb and the original continuous signal. That mathematical abstraction is often described as "sampling" for purposes of introducing the subjects of aliasing and the Nyquist-Shannon sampling theorem.

## Use in directional statistics

In directional statistics, the Dirac comb of period 2π is equivalent to a wrapped Dirac delta function, and is the analog of the Dirac delta function in linear statistics.

In linear statistics, the random variable (x) is usually distributed over the real number line, or some subset thereof, and the probability density of x is a function whose domain is the set real numbers, and whose integral from $-\infty$ to $+\infty$ is unity. In directional statistics, the random variable (θ) is distributed over the unit circle and the probability density of θ is a function whose domain is some interval of the real numbers of length 2π and whose integral over that interval is unity. Just as the integral of the product of a Dirac delta function with an arbitrary function over the real number line yields the value of that function at zero, so the integral of the product of a Dirac comb of period 2π with an arbitrary function of period 2π over the unit circle yields the value of that function at zero.

## References

• Bracewell, R.N. (1986), The Fourier Transform and Its Applications (revised ed.), McGraw-Hill ; 1st ed. 1965, 2nd ed. 1978.
• Córdoba, A (1989), "Dirac combs", Letters in Mathematical Physics 17 (3): 191–196, doi:10.1007/BF00401584

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Logarithmically-spaced Dirac comb — Like the standard Dirac comb, the logarithmically spaced Dirac comb consists of an infinite sequence of Dirac delta functions. In the case of the logarithmically spaced comb, these are spaced in octave intervals, i.e., the delta functions are… …   Wikipedia

• Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… …   Wikipedia

• Comb (disambiguation) — A comb is a toothed device used for straightening and cleaning hair or fibers. Comb may also refer to: Comb (anatomy), a fleshy growth or crest on the top of the head of certain birds and reptiles. Combing, a method used to straighten fibers for… …   Wikipedia

• Frequency comb — A frequency comb is the graphic representation of the spectrum of a mode locked laser. An octave spanning comb can be used for mapping radio frequencies into the optical frequency range or it can be used to steer a piezoelectric mirror within a… …   Wikipedia

• Paul Dirac — Paul Adrien Maurice Dirac Born Paul Adrien Maurice Dirac 8 August 1902(1902 08 08) Bristol, England …   Wikipedia

• Relations between Fourier transforms and Fourier series — In the mathematical field of harmonic analysis, the continuous Fourier transform has very precise relations with Fourier series. It is also closely related to the discrete time Fourier transform (DTFT) and the discrete Fourier transform (DFT).… …   Wikipedia

• Fourier transform — Fourier transforms Continuous Fourier transform Fourier series Discrete Fourier transform Discrete time Fourier transform Related transforms The Fourier transform is a mathematical operation that decomposes a function into its constituent… …   Wikipedia

• List of Fourier-related transforms — This is a list of linear transformations of functions related to Fourier analysis. Such transformations map a function to a set of coefficients of basis functions, where the basis functions are sinusoidal and are therefore strongly localized in… …   Wikipedia

• Occurrences of Grandi's series — Main article: Grandi s series Contents 1 Parables 2 Numerical series 3 Power series 4 Fourier series …   Wikipedia

• List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia