- Extended negative binomial distribution
In
probability andstatistics the extended negative binomial distribution is adiscrete probability distribution extending thenegative binomial distribution .The distribution appeared in its general form in a paper by K. Hess, A. Liewald and K.D. Schmidt cite journal
first = Klaus Th.
last = Hess
coauthors = Anett Liewald, Klaus D. Schmidt
year = 2002
title = An extension of Panjer's recursion
journal = ASTIN Bulletin
volume = 32
issue = 2
pages = 283–297
url = http://www.casact.org/library/astin/vol32no2/283.pdf
format=PDF] when they characterized all distributions for which the extendedPanjer recursion works. For the case "m" = 1, the distribution was already discussed by Willmot. cite journal
first = Gordon
last = Willmot
year = 1988
title = Sundt and Jewell's family of discrete distributions
journal = ASTIN Bulletin
volume = 18
issue = 1
pages = 17–29
url = http://www.casact.org/library/astin/vol18no1/17.pdf
format=PDF]Probability mass function
For a natural number "m" ≥ 1 and real parameters "p", "r" with 0 ≤ "p" < 1 and –"m" < "r" < –"m" + 1, the
probability mass function of arandom variable with an ExtNegBin("m", "r", "p") distribution is given by:
and
:
where
:
is the (generalized)
binomial coefficient and Γ denotes thegamma function .Proof that the probability mass function is well defined
Note that for all "k" ≥ "m"
:
has the same sign and, using log(1 + "x") ≤ "x" for "x" > –1 and noting that "r" – 1 < 0,
:
Therefore,
:
Wikimedia Foundation. 2010.