Fréchet distribution

Fréchet distribution

Probability distribution
name =Fréchet
type =density


parameters =alpha in (0,infty] shape
support =x>0
pdf =alpha ; x^{-1-alpha} ; e^{-x^{-alpha

cdf =e^{-x^{-alpha
mean =Gammaleft(1-frac{1}{alpha} ight) ext{ if } alpha>1
median =left(frac{1}{log_e(2)} ight)^{1/alpha}
mode =left(frac{alpha}{1+alpha} ight)^{1/alpha}
variance =Gammaleft(1-frac{2}{alpha} ight)- left(Gammaleft(1-frac{1}{alpha} ight) ight)^2 ext{ if } alpha>2
skewness =
g_k =
kurtosis =
entropy =
mgf =
char =

The Fréchet distribution is a special case of the generalized extreme value distribution. It has the cumulative probability function:Pr(X ext{ if } x>0. where "α">0 is a shape parameter. It can be generalised to include a location parameter "m" and a scale parameter "s">0 with the cumulative probability function :Pr(X ext{ if } x>m.

Named for Maurice Fréchet who wrote a related paper in 1927, further work was done by Fisher and Tippett in 1928 and by Gumbel in 1958

ee also

*Type-2 Gumbel distribution

External links

* [ Bank of England working paper]
* [ application of a new extreme value distribution to air pollution data]
* [ Wave Analysis for Fatigue and Oceanography]
* [ "EXTREME VALUE DISTRIBUTIONS Theory and Applications", Kotz & Nadarajah]


* Fréchet, M., (1927). "Sur la loi de probabilité de l'écart maximum." Ann. Soc. Polon. Math. 6, 93.
* Fisher, R.A., Tippett, L.H.C., (1928). "Limiting forms of the frequency distribution of the largest and smallest member of a sample." Proc. Cambridge Philosophical Society 24:180-190.
* Gumbel, E.J. (1958). "Statistics of Extremes." Columbia University Press, New York.

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Frechet-Raum — Ein Fréchet Raum (nach dem französischen Mathematiker Maurice René Fréchet) ist ein topologischer Vektorraum (Funktionalanalysis) mit speziellen Eigenschaften. Fréchet Räume können als eine Verallgemeinerung von Banach Räumen angesehen werden.… …   Deutsch Wikipedia

  • Maurice René Fréchet — Born September 2, 1878(1878 0 …   Wikipedia

  • Type-2 Gumbel distribution — Probability distribution name =Type 2 Gumbel| type =density pdf cdf parameters =a! (real) b! shape (real) support = pdf =a b x^{ a 1} e^{ b x^{ a! cdf =e^{ b x^{ a! mean = median = mode = variance = skewness = kurtosis = entropy = mgf = char = In …   Wikipedia

  • Generalized extreme value distribution — Probability distribution name =Generalized extreme value type =density pdf cdf parameters =mu in [ infty,infty] , location (real) sigma in (0,infty] , scale (real) xiin [ infty,infty] , shape (real) support =x>mu sigma/xi,;(xi > 0) x …   Wikipedia

  • Théorème de Fréchet-Kolmogorov —  Ne doit pas être confondu avec Théorème de Fréchet Riesz. En analyse fonctionnelle, le théorème de Fréchet Kolmogorov (noms auxquels on adjoint parfois Riesz et/ou Weil) donne une condition nécessaire et suffisante pour qu un ensemble de… …   Wikipédia en Français

  • Normal distribution — This article is about the univariate normal distribution. For normally distributed vectors, see Multivariate normal distribution. Probability density function The red line is the standard normal distribution Cumulative distribution function …   Wikipedia

  • Exponential distribution — Not to be confused with the exponential families of probability distributions. Exponential Probability density function Cumulative distribution function para …   Wikipedia

  • Cauchy distribution — Not to be confused with Lorenz curve. Cauchy–Lorentz Probability density function The purple curve is the standard Cauchy distribution Cumulative distribution function …   Wikipedia

  • Maxwell–Boltzmann distribution — Maxwell–Boltzmann Probability density function Cumulative distribution function parameters …   Wikipedia

  • Probability distribution — This article is about probability distribution. For generalized functions in mathematical analysis, see Distribution (mathematics). For other uses, see Distribution (disambiguation). In probability theory, a probability mass, probability density …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”