Relativistic Breit–Wigner distribution

Relativistic Breit–Wigner distribution

The relativistic Breit–Wigner distribution (after Gregory Breit and Eugene Wigner) is a continuous probability distribution with the following probability density function:[1]

 f(E) = \frac{k}{\left(E^2-M^2\right)^2+M^2\Gamma^2}.

Where k is the constant of proportionality, equal to

 k = \frac{2 \sqrt{2} M \Gamma  \gamma }{\pi \sqrt{M^2+\gamma}} with  \gamma=\sqrt{M^2\left(M^2+\Gamma^2\right)}


(This equation is written using natural units, ħ = c = 1.) It is most often used to model resonances (unstable particles) in high-energy physics. In this case E is the center-of-mass energy that produces the resonance, M is the mass of the resonance, and Γ is the resonance width (or decay width), related to its mean lifetime according to τ = 1/Γ. (With units included, the formula is τ = ħ/Γ.) The probability of producing the resonance at a given energy E is proportional to f(E), so that a plot of the production rate of the unstable particle as a function of energy traces out the shape of the relativistic Breit–Wigner distribution.

In general, Γ can also be a function of E; this dependence is typically only important when Γ is not small compared to M and the phase space-dependence of the width needs to be taken into account. (For example, in the decay of the rho meson into a pair of pions.) The factor of M2 that multiplies Γ2 should also be replaced with E2 (or E4/M2, etc.) when the resonance is wide.[2]

The form of the relativistic Breit–Wigner distribution arises from the propagator of an unstable particle, which has a denominator of the form p2M2 + i. Here p2 is the square of the four-momentum carried by the particle. The propagator appears in the quantum mechanical amplitude for the process that produces the resonance; the resulting probability distribution is proportional to the absolute square of the amplitude, yielding the relativistic Breit–Wigner distribution for the probability density function as given above.

The form of this distribution is similar to the solution of the classical equation of motion for a damped harmonic oscillator driven by a sinusoidal external force.

See also

  • Cauchy distribution, also known as the (non-relativistic) Breit–Wigner distribution or Lorentz curve

References

  1. ^ See [1] for a discussion of the widths of particles in the PYTHIA manual. Note that this distribution is usually represented as a function of the squared energy.
  2. ^ See the treatment of the Z-boson cross-section in, for example, G. Giacomelli, B. Poli (2002). "Results from high-energy accelerators". arXiv:hep-ex/0202023 [hep-ex]. 



Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Breit (disambiguation) — Breit may refer to: * Breit, a municipality in Rhineland Palatinate, Germany * Breit equation * Relativistic Breit Wigner distribution * Breit Rabi Oscillation , Rabi cycle Persons with the surname Breit * Franz Breit (1817 1868), Obstetrician *… …   Wikipedia

  • Cauchy distribution — Not to be confused with Lorenz curve. Cauchy–Lorentz Probability density function The purple curve is the standard Cauchy distribution Cumulative distribution function …   Wikipedia

  • Maxwell–Boltzmann distribution — Maxwell–Boltzmann Probability density function Cumulative distribution function parameters …   Wikipedia

  • Normal distribution — This article is about the univariate normal distribution. For normally distributed vectors, see Multivariate normal distribution. Probability density function The red line is the standard normal distribution Cumulative distribution function …   Wikipedia

  • Probability distribution — This article is about probability distribution. For generalized functions in mathematical analysis, see Distribution (mathematics). For other uses, see Distribution (disambiguation). In probability theory, a probability mass, probability density …   Wikipedia

  • Negative binomial distribution — Probability mass function The orange line represents the mean, which is equal to 10 in each of these plots; the green line shows the standard deviation. notation: parameters: r > 0 number of failures until the experiment is stopped (integer,… …   Wikipedia

  • Exponential distribution — Not to be confused with the exponential families of probability distributions. Exponential Probability density function Cumulative distribution function para …   Wikipedia

  • Multivariate normal distribution — MVN redirects here. For the airport with that IATA code, see Mount Vernon Airport. Probability density function Many samples from a multivariate (bivariate) Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the… …   Wikipedia

  • Uniform distribution (continuous) — Uniform Probability density function Using maximum convention Cumulative distribution function …   Wikipedia

  • Chi-squared distribution — This article is about the mathematics of the chi squared distribution. For its uses in statistics, see chi squared test. For the music group, see Chi2 (band). Probability density function Cumulative distribution function …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”