Variance-gamma distribution
- Variance-gamma distribution
Probability distribution
name =variance-gamma distribution
type =density
pdf_
cdf_
parameters = location (real) (real) asymmetry parameter (real)
support =
pdf = ; e^{eta (x - mu)} denotes a modified Bessel function of the third kind denotes the Gamma function
cdf =
mean =
median =
mode =
variance =
skewness = |
kurtosis = |
entropy =
mgf =
char =
The variance-gamma distribution is a continuous probability distribution that is defined as the normal variance-mean mixture where the mixing density is the gamma distribution. The tails of the distribution decrease more slowly than the normal distribution. It is therefore suitable to model phenomena where numerically large values are more probable than is the case for the normal distribution. Examples are returns from financial assets and turbulent wind speeds. The distribution was introduced in the financial literature by Madan and Seneta [D.B. Madan and E. Seneta (1990): The variance gamma (V.G.) model for share market returns, "Journal of Business", 63, pp. 511 - 524.] . The variance-gamma distributions form a subclass of the generalised hyperbolic distributions.
The fact that there is a simple expression for the moment generating function implies that simple expressions for all moments are available. The class of variance-gamma distributions is closed under convolution in the following sense. If and are independent random variable that are variance-gamma distributed with the same values of the parameters and , but possibly different values of the other parameters, , and , respectively, then is variance-gamma distributed with parameters and
Notes
Wikimedia Foundation.
2010.
Look at other dictionaries:
Gamma distribution — eta m = V {3m} e^{ xi m}. # If eta m > xi m^{delta 1} e^{ xi m}, then increment m and go to step 2. # Assume xi = xi m to be the realization of Gamma (delta, 1)Now, to summarize,: heta left( xi sum {i=1} ^{ [k] } {ln U i} ight) sim Gamma (k,… … Wikipedia
Normal-gamma distribution — Normal gamma parameters: location (real) (real) (real) (real) support … Wikipedia
Inverse-gamma distribution — Probability distribution name =Inverse gamma type =density pdf cdf parameters =alpha>0 shape (real) eta>0 scale (real) support =xin(0;infty)! pdf =frac{eta^alpha}{Gamma(alpha)} x^{ alpha 1} exp left(frac{ eta}{x} ight) cdf… … Wikipedia
Normal-scaled inverse gamma distribution — Normal scaled inverse gamma parameters: location (real) (real) (real) (real) support … Wikipedia
Normal-exponential-gamma distribution — Normal Exponential Gamma parameters: μ ∈ R mean (location) shape scale support: pdf … Wikipedia
Gamma process — A Gamma process is a Lévy process with independent Gamma increments. Often written as Gamma(t;gamma,lambda), it is a pure jump increasing Levy process with intensity measure u(x)=gamma x^{ 1}exp( lambda x), for positive x. Thus jumps whose size… … Wikipedia
Generalised hyperbolic distribution — Probability distribution name =generalised hyperbolic type =density pdf cdf parameters =mu location (real) lambda (real) alpha (real) eta asymmetry parameter (real) delta scale parameter (real) gamma = sqrt{alpha^2 eta^2} support =x in ( infty; … Wikipedia
Distribution De Weibull — Weibull Densité de probabilité / Fonction de masse Fonction de répartition … Wikipédia en Français
Distribution de weibull — Weibull Densité de probabilité / Fonction de masse Fonction de répartition … Wikipédia en Français
Distribution De Pareto — Pareto Densité de probabilité / Fonction de masse Fonctions de masse pour plusieurs k avec xm = 1. L axe horizontal symbolise le paramètre x . Lorsque k→∞ la distribution s approche de δ(x − x … Wikipédia en Français