Inverse-gamma distribution

Inverse-gamma distribution

Probability distribution
name =Inverse-gamma
type =density
pdf_

cdf_

parameters =alpha>0 shape (real)
eta>0 scale (real)
support =xin(0;infty)!
pdf =frac{eta^alpha}{Gamma(alpha)} x^{-alpha - 1} exp left(frac{-eta}{x} ight)
cdf =frac{Gamma(alpha,eta/x)}{Gamma(alpha)} !
mean =frac{eta}{alpha-1}! for alpha > 1
median =
mode =frac{eta}{alpha+1}!
variance =frac{eta^2}{(alpha-1)^2(alpha-2)}! for alpha > 2
skewness =frac{4sqrt{alpha-2
{alpha-3}! for alpha > 3
kurtosis =frac{30,alpha-66}{(alpha-3)(alpha-4)}! for alpha > 4
entropy =alpha!+!ln(etaGamma(alpha))!-!(1!+!alpha)psi(alpha)
mgf =frac{2left(-eta t ight)^{!!frac{alpha}{2}{Gamma(alpha)}K_{alpha}left(sqrt{-4eta t} ight)
char =frac{2left(-ieta t ight)^{!!frac{alpha}{2}{Gamma(alpha)}K_{alpha}left(sqrt{-4ieta t} ight)

In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution.

Characterization

Probability density function

The inverse gamma distribution's probability density function is defined over the support x > 0

:f(x; alpha, eta)= frac{eta^alpha}{Gamma(alpha)}(1/x)^{alpha + 1}expleft(-eta/x ight)

with shape parameter alpha and scale parameter eta.

Cumulative distribution function

The cumulative distribution function is the regularized gamma function

:F(x; alpha, eta) = frac{Gamma(alpha,eta/x)}{Gamma(alpha)} !

where the numerator is the upper incomplete gamma function and the denominator is the gamma function.

Related distributions

* If X sim mbox{Inv-Gamma}(alpha, eta) and alpha = frac{ u}{2} and eta = frac{1}{2} then X sim mbox{Inv-chi-square}( u), is an inverse-chi-square distribution
* If X sim mbox{Inv-Gamma}(k, heta), , then 1/X sim mbox{Gamma}(k, heta^{-1}), is a Gamma distribution
* A multivariate generalization of the inverse-gamma distribution is the inverse-Wishart distribution.

Derivation from Gamma distribution

The pdf of the gamma distribution is

: f(x) = x^{k-1} frac{e^{-x/ heta{ heta^k , Gamma(k)}

and define the transformation Y = g(X) = frac{1}{X} then the resulting transformation is

:f_Y(y) = f_X left( g^{-1}(y) ight) left| frac{d}{dy} g^{-1}(y) ight
::=frac{1}{ heta^k Gamma(k)}left( frac{1}{y} ight)^{k-1}exp left( frac{-1}{ heta y} ight)frac{1}{y^2}::=frac{1}{ heta^k Gamma(k)}left( frac{1}{y} ight)^{k+1}exp left( frac{-1}{ heta y} ight)::=frac{1}{ heta^k Gamma(k)}y^{-k-1}exp left( frac{-1}{ heta y} ight).

Replacing k with alpha; heta^{-1} with eta; and y with x results in the inverse-gamma pdf shown above

:f(x)=frac{eta^alpha}{Gamma(alpha)}x^{-alpha-1}exp left( frac{-eta}{x} ight).

ee also

*gamma distribution
*inverse-chi-square distribution
*normal distribution


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Normal-scaled inverse gamma distribution — Normal scaled inverse gamma parameters: location (real) (real) (real) (real) support …   Wikipedia

  • Inverse-Wishart distribution — In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability density function defined on matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a… …   Wikipedia

  • Gamma distribution — eta m = V {3m} e^{ xi m}. # If eta m > xi m^{delta 1} e^{ xi m}, then increment m and go to step 2. # Assume xi = xi m to be the realization of Gamma (delta, 1)Now, to summarize,: heta left( xi sum {i=1} ^{ [k] } {ln U i} ight) sim Gamma (k,… …   Wikipedia

  • Normal-gamma distribution — Normal gamma parameters: location (real) (real) (real) (real) support …   Wikipedia

  • Loi inverse-gamma — Inverse gamma Densité de probabilité / Fonction de masse Fonction de répartition …   Wikipédia en Français

  • Normal-inverse Gaussian distribution — Normal inverse Gaussian (NIG) parameters: μ location (real) α tail heavyness (real) β asymmetry parameter (real) δ scale parameter (real) support …   Wikipedia

  • Distribution de Lévy — Densité de probabilité / Fonction de masse Fonction de répartition …   Wikipédia en Français

  • Inverse-chi-square distribution — Probability distribution name =Inverse chi square type =density pdf cdf parameters = u > 0! support =x in (0, infty)! pdf =frac{2^{ u/2{Gamma( u/2)},x^{ u/2 1} e^{ 1/(2 x)}! cdf =Gamma!left(frac{ u}{2},frac{1}{2x} ight)igg/, Gamma!left(frac{… …   Wikipedia

  • Distribution Gamma — Loi Gamma Densité de probabilité / Fonction de masse Fonction de répartition > …   Wikipédia en Français

  • Distribution d'Erlang — Erlang Densité de probabilité / Fonction de masse Fonction de répartition …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”