Multivariate Student distribution

Multivariate Student distribution
Multivariate Student
parameters: \mu = [\mu_1, \dots, \mu_P]^T location (real vector)
Σ scale matrix (positive-definite real P\times P matrix)
n is the degree of freedom
support: x \in\mathbb{R}^P\!
pdf: 
\frac{\Gamma\left[(n+p)/2\right]}{\Gamma(n/2)n^{p/2}\pi^{p/2}\left|{\mathbf\Sigma}\right|^{1/2}\left[1+\frac{1}{n}({\mathbf x}-{\mathbf\mu})^T{\mathbf\Sigma}^{-1}({\mathbf x}-{\mathbf\mu})\right]^{(n+p)/2}}
cdf: No analytic expression
mean: if n > 1, μ else undefined
median: μ
mode: μ
variance: if n > 2, \frac{n}{n-2} \mathbf\Sigma else undefined
skewness: 0

In statistics, a multivariate Student distribution is a multivariate generalization of the Student's t-distribution. One common method of construction, for the case of p dimensions, is based on the observation that if {\mathbf y} and u are independent and distributed as {\mathcal N}({\mathbf 0},{\mathbf\Sigma}) and \chi^2_n (i.e. multivariate normal and Chi-squared distributions) respectively, then \mathbf{\Sigma}\, is a p x p matrix, and {\mathbf y}\sqrt{n/u}={\mathbf x}-{\mathbf\mu}, then {\mathbf x} has the density


\frac{\Gamma\left[(n+p)/2\right]}{\Gamma(n/2)n^{p/2}\pi^{p/2}\left|{\mathbf\Sigma}\right|^{1/2}\left[1+\frac{1}{n}({\mathbf x}-{\mathbf\mu})^T{\mathbf\Sigma}^{-1}({\mathbf x}-{\mathbf\mu})\right]^{(n+p)/2}}

and is said to be distributed as a Multivariate t-distribution with parameters {\mathbf\Sigma},{\mathbf\mu},n.

There are in fact many candidates for the multivariate generalization of Student's t-distribution. An extensive survey of the field has been given by Kotz and Nadarajah (2004). The essential issue is to define a probability density function of several variables that is the appropriate generalization of the formula for the univariate case. In one dimension (p = 1), with t = x − μ and Σ = 1, we have the probability density function

f(t) = \frac{\Gamma[(n+1)/2]}{\sqrt{n\pi\,}\,\Gamma[n/2]} (1+t^2/n)^{-(n+1)/2}

and one approach is to write down a corresponding function of several variables. This is the basic idea of elliptical distribution theory, where one writes down a corresponding function of p variables ti that replaces t2 by a quadratic function of all the ti. It is clear that this only makes sense when all the marginal distributions have the same degrees of freedom n. With A = Σ − 1, one has a simple choice of multivariate density function

f(x_i) = \frac{\Gamma((n+p)/2)\left|A\right|^{1/2}}{\sqrt{n^p\pi^p\,}\,\Gamma(n/2)} (1+\sum_{i,j=1}^{p,p} A_{ij} t_i t_j/n)^{-(n+p)/2}

which is the standard but not the only choice.

An important special case is the standard bivariate Student distribution, p = 2:

f(t_i) = \frac{\left|A\right|^{1/2}}{2\pi} (1+\sum_{i,j=1}^{2,2} A_{ij} t_i t_j/n)^{-(n+2)/2}

and if A is the identity matrix we have

f(t_i) = \frac{1}{2\pi} (1+(t_1^2 + t_2^2)/n)^{-(n+2)/2}.

The difficulty with the standard representation is revealed by this formula, which does not factorize into the product of the marginal one-dimensional distributions. When Σ is diagonal the standard representation can be shown to have zero correlation but the marginal distributions are not statistically independent. There are differing views on this issue, which is under discussion in the research literature as of early 2007.

Contents

Further theory

Many such distributions may be constructed by considering the quotients of normal random variables with the square root of a sample from a chi-squared distribution. These are surveyed in the references and links below.

Copulas based on the multivariate Student

The use of such distributions is enjoying renewed interest due to applications in mathematical finance, especially through the use of the Student t copula.

See also

References

  • Kotz, Samuel; Nadarajah, Saralees (2004). Multivariate t Distributions and Their Applications. Cambridge University Press. ISBN 0521826543. 
  • Cherubini, Umberto; Luciano, Elisa; Vecchiato, Walter (2004). Copula methods in finance. John Wiley & Sons. ISBN 0470863447. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Multivariate stable distribution — multivariate stable Probability density function Heatmap showing a Multivariate (bivariate) stable distribution with α = 1.1 parameters: exponent shift/location vector …   Wikipedia

  • Multivariate normal distribution — MVN redirects here. For the airport with that IATA code, see Mount Vernon Airport. Probability density function Many samples from a multivariate (bivariate) Gaussian distribution centered at (1,3) with a standard deviation of 3 in roughly the… …   Wikipedia

  • Multivariate Pólya distribution — The multivariate Pólya distribution, named after George Pólya, also called the Dirichlet compound multinomial distribution, is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter …   Wikipedia

  • Student's t-distribution — Probability distribution name =Student s t type =density pdf cdf parameters = u > 0 degrees of freedom (real) support =x in ( infty; +infty)! pdf =frac{Gamma(frac{ u+1}{2})} {sqrt{ upi},Gamma(frac{ u}{2})} left(1+frac{x^2}{ u} ight)^{ (frac{… …   Wikipedia

  • Multivariate statistics — is a form of statistics encompassing the simultaneous observation and analysis of more than one statistical variable. The application of multivariate statistics is multivariate analysis. Methods of bivariate statistics, for example simple linear… …   Wikipedia

  • Student's t-Verteilung — Dichten von t verteilten Zufallsgrößen Die Studentsche t Verteilung (auch Student t Verteilung) ist eine Wahrscheinlichkeitsverteilung, die 1908 von William Sealey Gosset entwickelt wurde. Er hatte festgestellt, dass der standardisierte… …   Deutsch Wikipedia

  • Student'sche t-Verteilung — Dichten von t verteilten Zufallsgrößen Die Studentsche t Verteilung (auch Student t Verteilung) ist eine Wahrscheinlichkeitsverteilung, die 1908 von William Sealey Gosset entwickelt wurde. Er hatte festgestellt, dass der standardisierte… …   Deutsch Wikipedia

  • Student-Verteilung — Dichten von t verteilten Zufallsgrößen Die Studentsche t Verteilung (auch Student t Verteilung) ist eine Wahrscheinlichkeitsverteilung, die 1908 von William Sealey Gosset entwickelt wurde. Er hatte festgestellt, dass der standardisierte… …   Deutsch Wikipedia

  • Student t-Verteilung — Dichten von t verteilten Zufallsgrößen Die Studentsche t Verteilung (auch Student t Verteilung) ist eine Wahrscheinlichkeitsverteilung, die 1908 von William Sealey Gosset entwickelt wurde. Er hatte festgestellt, dass der standardisierte… …   Deutsch Wikipedia

  • Cauchy distribution — Not to be confused with Lorenz curve. Cauchy–Lorentz Probability density function The purple curve is the standard Cauchy distribution Cumulative distribution function …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”