Zeta distribution

Zeta distribution

Probability distribution
name =zeta
type =mass
pdf_

Plot of the Zeta PMF on a log-log scale. (Note that the function is only defined at integer values of k. The connecting lines do not indicate continuity.)
cdf_


parameters =sin(1,infty)
support =k in {1,2,ldots}
pdf =frac{1/k^s}{zeta(s)}
cdf =frac{H_{k,s
{zeta(s)}
mean =frac{zeta(s-1)}{zeta(s)}~ extrm{for}~s>2
median =
mode =1,
variance =frac{zeta(s)zeta(s-2) - zeta(s-1)^2}{zeta(s)^2}~ extrm{for}~s>3
skewness =
kurtosis =
entropy =sum_{k=1}^inftyfrac{1/k^s}{zeta(s)}log (k^s zeta(s)).,!
mgf =frac{operatorname{Li}_s(e^t)}{zeta(s)}
char =frac{operatorname{Li}_s(e^{it})}{zeta(s)}

In probability theory and statistics, the zeta distribution is a discrete probability distribution. If "X" is a zeta-distributed random variable with parameter "s", then the probability that "X" takes the integer value "k" is given by the probability mass function

:f_s(k)=k^{-s}/zeta(s),

where ζ("s") is the Riemann zeta function (which is undefined for "s" = 1).

The multiplicities of distinct prime factors of "X" are independent random variables.

The zeta distribution is equivalent to the Zipf distribution for infinite "N". Indeed the terms "Zipf distribution" and the "zeta distribution" are often used interchangeably.

Moments

The "n"th raw moment is defined as the expected value of "X""n":

:m_n = E(X^n) = frac{1}{zeta(s)}sum_{k=1}^infty frac{1}{k^{s-n

The series on the right is just a series representation of the Riemann zeta function, but it only converges for values of "s-n" that are greater than unity. Thus:

:m_n =left{egin{matrix}zeta(s-n)/zeta(s) & extrm{for}~n < s-1 \infty & extrm{for}~n ge s-1end{matrix} ight.

Note that the ratio of the zeta functions is well defined, even for "n" &ge; "s" − 1 because the series representation of the zeta function can be analytically continued. This does not change the fact that the moments are specified by the series itself, and are therefore undefined for large "n".

Moment generating function

The moment generating function is defined as

:M(t;s) = E(e^{tX}) = frac{1}{zeta(s)} sum_{k=1}^infty frac{e^{tk{k^s}.

The series is just the definition of the polylogarithm, valid for e^t<1 so that

:M(t;s) = frac{operatorname{Li}_s(e^t)}{zeta(s)} ext{ for }t<0.

The Taylor series expansion of this function will not necessarily yield the moments of the distribution. The Taylor series using the moments as they usually occur in the moment generating function yields

:sum_{n=0}^infty frac{m_n t^n}{n!},

which obviously is not well defined for any finite value of "s" since the moments become infinite for large "n". If we use the analytically continued terms instead of the moments themselves, we obtain from a series representation of the polylogarithm

:frac{1}{zeta(s)}sum_{n=0,n e s-1}^infty frac{zeta(s-n)}{n!},t^n=frac{operatorname{Li}_s(e^t)-Phi(s,t)}{zeta(s)}

for scriptstyle |t|,<,2pi. scriptstylePhi(s,t) is given by

:Phi(s,t)=Gamma(1-s)(-t)^{s-1} ext{ for }s e 1,2,3ldots:Phi(s,t)=frac{t^{s-1{(s-1)!}left [H_s-ln(-t) ight] ext{ for }s=2,3,4ldots:Phi(s,t)=-ln(-t) ext{ for }s=1,,

where "H""s" is a harmonic number.


=The case "s" = 1=

&zeta;(1) is infinite as the harmonic series, and so the case when "s" = 1 is not meaningful. However, if "A" is any set of positive integers that has a density, i.e. if

:lim_{n ightarrowinfty}frac{N(A,n)}{n}

exists where "N"("A", "n") is the number of members of "A" less than or equal to "n", then

:lim_{s ightarrow 1+}P(Xin A),

is equal to that density.

The latter limit can also exist in some cases in which "A" does not have a density. For example, if "A" is the set of all positive integers whose first digit is "d", then "A" has no density, but nonetheless the second limit given above exists and is proportional to

:log(d+1) - log(d),,

similar to Benford's law.

See also

Other "power-law" distributions

*Cauchy distribution
*Lévy distribution
*Lévy skew alpha-stable distribution
*Pareto distribution
*Zipf's law
*Zipf-Mandelbrot law

External links

* " [http://www.math.uu.se/research/pub/Gut10.pdf Some remarks on the Riemann zeta distribution] " by Allan Gut. What Gut calls the "Riemann zeta distribution" is actually the probability distribution of −log "X", where "X" is a random variable with what this article calls the zeta distribution.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Distribution Zeta — Zéta Densité de probabilité / Fonction de masse Fonction de répartition …   Wikipédia en Français

  • ZETA — Basisdaten Entwickler ZETA Programmierteam Version 1.5 (28. Februar 2007) Abstammung BeO …   Deutsch Wikipedia

  • Zeta (Betriebssystem) — ZETA Entwickler ZETA Programmierteam Version 1.5 (28. Februar 2007) Abstammung BeOS   ZETA …   Deutsch Wikipedia

  • Zeta potential — is an abbreviation for electrokinetic potential in colloidal systems. In the colloidal chemistry literature, it is usually denoted using the Greek letter zeta, hence ζ potential . From a theoretical viewpoint, zeta potential is electric potential …   Wikipedia

  • Zeta (операционная система) — Zeta …   Википедия

  • Distribution De Pareto — Pareto Densité de probabilité / Fonction de masse Fonctions de masse pour plusieurs k  avec xm = 1. L axe horizontal symbolise le paramètre x . Lorsque k→∞ la distribution s approche de δ(x − x …   Wikipédia en Français

  • Distribution de pareto — Pareto Densité de probabilité / Fonction de masse Fonctions de masse pour plusieurs k  avec xm = 1. L axe horizontal symbolise le paramètre x . Lorsque k→∞ la distribution s approche de δ(x − x …   Wikipédia en Français

  • Zeta Instrument Processor Interface — (ZIPI) was a research project initiated by Zeta Instruments and UC Berkeley s CNMAT (Center for New Music and Audio Technologies). Introduced in 1994 in a series of publications in Computer Music Journal from MIT Press, ZIPI was intended as the… …   Wikipedia

  • Distribution De Gumbel — Gumbel Densité de probabilité / Fonction de masse Fonction de répartition …   Wikipédia en Français

  • Distribution de gumbel — Gumbel Densité de probabilité / Fonction de masse Fonction de répartition …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”