- Microprocessor chronology
-
Contents
1970s
In the 1970s the microprocessors are mostly 8-bit and manufactured with the NMOS technology.
Date Name Developer Max clock (first version) Word size
(bits)Process Transistors 1971 PPS-25 Fairchild 400 kHz 4 Multi-chip, pMOS[1][2] 1971 4004 Intel 740 kHz 4 10 µm 2,250 pMOS 1972 8008 Intel 500 kHz 8 10 μm 3,500 pMOS 1972 PPS-4 Rockwell 200 kHz 4 pMOS[3][4] 1973 μCOM 4 NEC 1 MHz 4 2,500 NMOS[5][6] 1973 IMP-16 National 715 kHz 16 Multi-chip, pMOS[7][8] 1973 Mini-D Burroughs 1 MHz 8 pMOS[9] 1974 IMP-8 National 715 kHz 8 Multi-chip, pMOS[10] 1974 8080 Intel 2 MHz 8 6 μm 6,000 NMOS 1974 5065 Mostek 1.4 MHz 8 pMOS[11] 1974 TLCS-12 Toshiba 1 MHz 12 NMOS[10] 1974 CP1600 General Instrument 3.3 MHz 16 NMOS[12][13][14] 1974 IMP-4 National 500 kHz 4 Multi-chip, pMOS[10] 1974 4040 Intel 740 kHz 4 10 μm 3,000 pMOS 1974 6800 Motorola 1 MHz 8 - 4,100 NMOS[10] 1974 TMS 1000 Texas Instruments 400 kHz 4 8 μm 8,000 1974 PACE National 16 pMOS[12][15] 1975 6100 Intersil 4 MHz 12 - 20,000 1975 2650 Signetics 1.2 MHz 8 NMOS[10] 1975 PPS-8 Rockwell 256 kHz 8 pMOS[10] 1975 F-8 Fairchild 2 MHz 8 NMOS[10] 1975 CDP 1801 RCA 2 MHz 8 5 μm 5,000 CMOS
two-chip[16][17]1975 6502 MOS Technologies 1 MHz 8 - 4,000 1975 BPC[18][19] Hewlett Packard 10 MHz 16 - 6,000 + ROM 1976 CDP 1802 RCA 6.4 MHz 8 CMOS[20][21] 1976 Z-80 Zilog 2.5 MHz 8 4 μm 8,500 1976 TMS9900 Texas Instruments 3.3 MHz 16 - 8,000 1976 8x300 Signetics 8 MHz 8 Bipolar[22][23] 1977 8085 Intel 3.0 MHz 8 3 μm 6,500 1978 6809 Motorola 1 MHz 8 5 μm 40,000 1978 8086 Intel 5 MHz 16 3 μm 29,000 1978 6801 Motorola - 8 5 μm 35,000 1979 Z8000 Zilog - 16 - 17,500 1979 8088 Intel 5 MHz 8/16[24] 3 μm 29,000 1979 68000 Motorola 8 MHz 16/32[25] 4 μm 68,000 -
This list is incomplete; you can help by expanding it.
1980s
In the 1980s the microprocessors are 16-bit and 32-bit, mostly manufactured with the CMOS technology.
Date Name Developer Clock Word size
(bits)Process Transistors 1980 16032 National Semiconductor - 16/32 - 60,000 1981 6120 Harris Corporation 10 MHz - - 20,000 1981 ROMP IBM 10 MHz 32 2 µm 45,000 1981 T-11 DEC 2.5 MHz 16 5 µm 17,000 NMOS 1982 RISC-I[26] UC Berkeley 1 MHz - 5 µm 44,420 NMOS 1982 FOCUS Hewlett Packard 18 MHz 32 1.5 µm 450,000 1982 80186 Intel 6 MHz 16 - 55,000 ? 80C186 Intel 6 MHz 16 - ? CMOS 1982 80188 Intel 8 MHz 8/16 - 29,000 1982 80286 Intel 6 MHz 16 1.5 µm 134,000 1983 RISC-II UC Berkeley 3 MHz - 3 µm 40,760 NMOS 1983 MIPS[27] Stanford University 2 MHz 32 3 µm 25,000 1984 68020 Motorola 16 MHz 32 2 µm 190,000 1984 32032 National Semiconductor - 32 - 70,000 1984 V20 NEC 5 MHz 8/16 - 63,000 1985 80386 Intel 16-40 MHz 32 1.5 µm 275,000 1985 MicroVax II 78032 DEC 5 MHz 32 3.0 µm 125,000 1985 R2000 MIPS 8 MHz 32 2 µm 115,000 1988 R3000 MIPS 12 MHz 32 1.2 µm 120,000 1986 Z80000 Zilog - 32 - 91,000 1986 SPARC Sun 40 MHz 32 0.8 µm 800,000 1986 V60[28] NEC 16 MHz 16/32 1.5 µm 375,000 1987 CVAX 78034 DEC 12.5 MHz 32 2.0 µm 134,000 1987 ARM2 ARM Limited 18 MHz 32 2 µm 25,000[29] 1987 Gmicro/200[30] Hitachi - - 1.0 µm 730,000 1987 68030 Motorola 16 MHz 32 1.3 µm 273,000 1987 V70[28] NEC 20 MHz 16/32 1.5 µm 385,000 1988 80386SX Intel 12-33 MHz 16/32 - - 1988 i960 Intel 10 MHz 33/32 1.5 µm 250,000 1989 VAX DC520 "Rigel" DEC 35 MHz 32 1.5 µm 320,000 1989 80486 Intel 25 MHz 32 1 µm 1,180,000 1989 i860 Intel 25 MHz 32 1 µm 1,000,000 -
This list is incomplete; you can help by expanding it.
1990s
At the beginning of the1990s the microprocessors were still 32-bit, transitioning to 64-bit during the decade. The external RAM speed no longer follow the microprocessor's. So two clocks appears, an external and a faster internal. The internal is the one listed here.
Date Name Developer Clock Word size
(bits)Process Transistors (M) threads
per core1990 68040 Motorola 40 MHz 32 - 1.2 1990 POWER1 IBM 20-30 MHz 32 1.0 µm 6.9 1991 R4000 MIPS Computer Systems 100 MHz 64 0.8 µm 1.35 1991 NVAX DEC 62.5-90.91 MHz - 0.75 µm 1.3 1991 RSC IBM 33 MHz - 0.8 µm 1.0[31] 1992 Alpha 21064 DEC 100-200 MHz 64 0.75 µm 1.68 1992 microSPARC I Sun 40-50 MHz 32 0.8 µm 0.8 1992 PA-7100 Hewlett Packard 100 MHz 32 0.80 µm 0.85[32] 1993 PowerPC 601 IBM, Motorola 50-80 MHz 32 0.6 µm 2.8 1993 Pentium Intel 60-66 MHz - 0.8 µm 3.1 1993 POWER2 IBM 55-71.5 MHz 32 0.72 µm 23 1994 68060 Motorola 50 MHz 32 0.6 µm 2.5 1994 Alpha 21064A DEC 200-300 MHz 64 0.5 µm 2.85 1994 R4600 QED 100 - 125 MHz - 0.65 µm 2.2 1994 PA-7200 Hewlett Packard 125 MHz 32 0.55 µm 1.26 1994 PowerPC 603 IBM, Motorola 60-120 MHz 32 0.5 µm 1.6 1994 PowerPC 604 IBM, Motorola 100-180 MHz 32 0.5 µm 3.6 1994 PA-7100LC Hewlett Packard 100 MHz 32 0.75 µm 0.90 1995 Alpha 21164 DEC 266-333 MHz 64 0.5 µm 9.3 1995 UltraSPARC Sun 143–167 MHz 64 0.47 µm 5.2 1995 SPARC64 HAL Computer Systems 101–118 MHz 64 0.40 µm - 1995 Pentium Pro Intel 150-200 MHz - 0.35 µm 5.5 1996 Alpha 21164A DEC 400-500 MHz 64 0.35 µm 9.7 1996 K5 AMD 75-100 MHz - 0.5 µm 4.3 1996 R10000 MTI 150-250 MHz 64 0.35 µm 6.7 1996 R5000 QED 180 - 250 MHz - 0.35 µm 3.7 1996 SPARC64 II HAL Computer Systems 141–161 MHz 64 0.35 µm - 1996 PA-8000 Hewlett-Packard 160-180 MHz 64 0.50 µm 3.8 1996 P2SC IBM 150 MHz 32 0.29 µm 15 1997 RS64 IBM 125 MHz 64 ? nm ? 1997 Pentium II Intel 233-300 MHz - 0.35 µm 7.5 1997 PowerPC 620 IBM, Motorola 120-150 MHz 64 0.35 µm 6.9 1997 UltraSPARC IIs Sun 250-400 MHz 64 0.35 µm 5.4 1997 S/390 G4 IBM 370 MHz - 0.5 µm 7.8 1997 PowerPC 750 IBM, Motorola 233-366 MHz 32 0.26 µm 6.35 1997 K6 AMD 166-233 MHz - 0.35 µm 8.8 1998 RS64-II IBM 262 MHz 64 350 nm 12.5 1998 Alpha 21264 DEC 450-600 MHz 64 0.35 µm 15.2 1998 MIPS R12000 SGI 270-400 MHz 64 0.25 µm, 0.18 µm 6.9 1998 RM7000 QED 250 - 300 MHz - 0.25 µm 18 1998 SPARC64 III HAL Computer Systems 250-330 MHz 64 0.24 µm 17.6 1998 S/390 G5 IBM 500 MHz - 0.25 µm 25 1998 PA-8500 Hewlett Packard 300-440 MHz 64 0.25 µm 140 1998 POWER3 IBM 200 MHz 64 0.25 µm 15 1999 Pentium III Intel 450-600 MHz - 0.25 µm 9.5 1999 RS64-III IBM 450 MHz 64 220 nm 34 2 1999 PowerPC 7400 Motorola 350-500 MHz 32 200-130 nm 10.5 1999 Athlon AMD 500-1000 MHz - 0.25 µm 22 -
This list is incomplete; you can help by expanding it.
2000s
In the 2000s the microprocessors clock increase reach a ceiling because of the heat dissipation barrier. Because of this multi-core machine appears. 64-bit processors become mainstream.
Date Name Developer Clock Process Transistors (M) Cores per die /
Dies per module2000 Athlon XP AMD 1.33-1.73 GHz 180 nm 37.5 1 / 1 2000 Duron AMD 550 MHz-1.3 GHz 180 nm 25 1 / 1 2000 RS64-IV IBM 600 MHz-750 MHz 180 nm 44 1 / 2 2000 Pentium 4 Intel 1.3-2 GHz 180-130 nm 42 1 / 1 2000 SPARC64 IV Fujitsu 450–810 MHz 130 nm - 1 / 1 2000 z900 IBM 918 MHz 180 nm 47 1 / 12, 20 2001 MIPS R14000 SGI 500-600 MHz 130 nm 7.2 1 / 1 2001 POWER4 IBM 1.1-1.4 GHz 180-130 nm 174 2 / 1, 4 2001 UltraSPARC III Sun 750-1200 MHz 130 nm 29 1 / 1 2001 Itanium Intel 733-800 MHz 180 nm 25 1 / 1 2001 PowerPC 7450 Motorola 733-800 MHz 180-130 nm 33 1 / 1 2002 SPARC64 V Fujitsu 1.1-1.35 GHz 130 nm 190 1 / 1 2002 Itanium 2 Intel 0.9-1 GHz 180 nm 410 1 / 1 2003 PowerPC 970 IBM 1.6-2.0 GHz 130-90 nm 52 1 / 1 2003 Pentium M Intel 0.9-1.7 GHz 130-90 nm 77 1 / 1 2003 Opteron AMD 1.4-2.4 GHz 130 nm 106 1 / 1 2004 POWER5 IBM 1.65-1.9 GHz 130-90 nm 276 2 / 1, 2, 4 2005 Opteron "Athens" AMD 1.6-3.0 GHz 90 nm 114 1 / 1 2005 Pentium D Intel 2.8-3.2 GHz 90 nm 115 1 / 2 2005 Athlon 64 X2 AMD 2-2.4 GHz 90 nm 243 2 / 1 2005 UltraSPARC IV Sun 1.05-1.35 GHz 130 nm 66 2 / 1 2005 UltraSPARC T1 Sun 1-1.4 GHz 90 nm 300 8 / 1 2005 Xenon IBM 3.2 GHz 90-45 nm 165 3 / 1 2006 Core Duo Intel 1.1-2.33 GHz 90-65 nm 151 2 / 1 2006 Core 2 Intel 1.06-2.67 GHz 65-45 nm 291 2 / 1, 2 2006 Cell/B.E. IBM, Sony, Toshiba 3.2-4.6 GHz 90-45 nm 241 1+8 / 1 2006 Itanium "Montecito" Intel 1.4-1.6 GHz 90 nm 1720 2 / 1 2007 POWER6 IBM 3.5-4.7 GHz 65 nm 790 2 / 1 2007 SPARC64 VI Fujitsu 2.15-2.4 GHz 90 nm 543 2 / 1 2007 UltraSPARC T2 Sun 1-1.4 GHz 65 nm 503 8 / 1 2007 TILE64 Tilera 600-900 MHz 90-45 nm ? 64 / 1 2007 Opteron "Barcelona" AMD 1.8-3.2 GHz 65 nm 463 4 / 1 2008 Phenom AMD 1.8-2.6 GHz 65 nm 450 2, 3, 4 / 1 2008 z10 IBM 4.4 GHz 65 nm 993 4 / 7 2008 PowerXCell 8i IBM 2.8-4.0 GHz 65 nm 250 1+8 / 1 2008 SPARC64 VII Fujitsu 2.4-2.88 GHz 65 nm 600 4 / 1 2008 Atom Intel 0.8-1.6 GHz 65-45 nm 47 1 / 1 2008 Core i7 Intel 2.66-3.2 GHz 45-32 nm 730 2, 4, 6 / 1 2008 TILEPro64 Tilera 600-866 MHz 90-45 nm ? 64 / 1 2008 Opteron "Shanghai" AMD 2.3-2.9 GHz 45 nm 751 4 / 1 2009 Phenom II AMD 2.5-3.2 GHz 45 nm 758 2, 3, 4, 6 / 1 2009 Opteron "Istanbul" AMD 2.2-2.8 GHz 45 nm 904 6 / 1 2010s
Date Name Developer Clock Process Transistors (M) Cores per die /
Dies per modulethreads
per core2010 POWER7 IBM 3-4.14 GHz 45 nm 1200 4, 6, 8 / 1, 4 4 2010 Itanium "Tukwila" Intel 2 GHz 65 nm 2000 2, 4 / 1 2 2010 Opteron "Magny-cours" AMD 1.7-2.4 GHz 45 nm 1810 4, 6 / 2 1 2010 Xeon "Nehalem-EX" Intel 1.73-2.66 GHz 45 nm 2300 4, 6, 8 / 1 2 2010 z196 IBM 5.2 GHz 45 nm 1400 4 / 6 1 2010 SPARC T3 Sun 1.6 GHz 45 nm 2000 16 / 1 8 2010 SPARC64 VII+ Fujitsu 2.66-3.0 GHz 45 nm ? 4 / 1 2 2010 Intel "Westmere" Intel 1.86-3.33 GHz 32 nm 1170 4-6 / 1 2 2011 Intel "Sandy Bridge" Intel 1.6-3.4 GHz 32 nm 995[33] 2, 4 / 1 (1,) 2 2011 AMD Fusion AMD 1.0-1.6 GHz 40 nm 380[34] 1, 2 / 1 1 2011 Xeon E7 Intel 1.73-2.67 GHz 32 nm 2600 4, 6, 8, 10 / 1 1-2 2011 SPARC64 VIIIfx Fujitsu 2.0 GHz 45 nm 760 8 / 1 2 References
- ^ Ogdin 1975, pp. 57–59, 77
- ^ According to Ogdin 1975, the Fairchild PPS-25 was first delivered in 2Q 1971 and the Intel 4004 in 4Q 1971.
- ^ Ogdin 1975, pp. 72, 77
- ^ Rockwell PPS-4, The Antique Chip Collector's Page. Accessed on line June 14, 2010.
- ^ Ryoichi Mori, Hiroaki Tajima, Morihiko Tajima and Yoshikuni Okada (October 1977). Table 2.2, p. 51. "Microprocessors in Japan". Euromicro Newsletter 3 (4): 50–7. doi:10.1016/0303-1268(77)90111-0.
- ^ NEC 751 (uCOM-4), The Antique Chip Collector's Page. Accessed on line June 11, 2010.
- ^ Ogdin 1975, pp. 70, 77
- ^ National Semiconductor IMP-16, The Antique Chip Collector's Page. Accessed on line June 11, 2010.
- ^ Ogdin 1975, pp. 55, 77
- ^ a b c d e f g Ogdin 1975, p. 77
- ^ Ogdin 1975, pp. 65, 77
- ^ a b David Russell (February 1978). "Microprocessor survey". Microprocessors 2 (1): 13–20, See p. 18. doi:10.1016/0308-5953(78)90071-5.
- ^ Microprocessors - The Early Years 1971–1974, The Antique Chip Collector's Page. Accessed on line June 16, 2010.
- ^ "CP1600 16-Bit Single-Chip Microprocessor", data sheet, General Instrument, 1977. Accessed on line June 18, 2010.
- ^ Allen Kent, James G. Williams, ed (1990). "Evolution of Computerized Maintenance Management to Generation of Random Numbers". Encyclopedia of Microcomputers. 7. Marcel Dekker. p. 336. ISBN 0824727061.
- ^ RCA COSMAC 1801, The Antique Chip Collector's Page. Accessed on line June 14, 2010.
- ^ "CDP 1800 μP Commercially available" (PDF). Microcomputer Digest 2 (4): 1–3. October 1975. http://www.bitsavers.org/pdf/microcomputerAssociates/Microcomputer_Digest_v02n04_Oct75.pdf.
- ^ "Hybrid Microprocessor". http://www.hp9825.com/html/hybrid_microprocessor.html. Retrieved 2008-06-15.
- ^ "HP designs Custom 16-bit μC Chip" (PDF). Microcomputer Digest 2 (4): 8. October 1975. http://www.bitsavers.org/pdf/microcomputerAssociates/Microcomputer_Digest_v02n04_Oct75.pdf.
- ^ RCA COSMAC 1802, The Antique Chip Collector's Page. Accessed on line June 14, 2010.
- ^ "CDP 1802" (PDF). Microcomputer Digest 2 (10): 1, 4. April 1976. http://www.bitsavers.org/pdf/microcomputerAssociates/Microcomputer_Digest_v02n10_Apr76.pdf.
- ^ Hans Hoffman; John Nemec (April 1977). "A fast microprocessor for control applications". Euromicro Newsletter 3 (3): 53–59. doi:10.1016/0303-1268(77)90010-4.
- ^ Microprocessors - The Explosion 1975-1976, The Antique Chip Collector's Page. Accessed on line June 18, 2010.
- ^ The Intel 8088 had an 8-bit external data bus but internally used a 16-bit architecture.
- ^ The Motorola 68000 had a 16-bit external data bus but internally used 32-bit registers.
- ^ "Berkeley Hardware Prototypes". http://www.cs.berkeley.edu/~pattrsn/Arch/prototypes2.html. Retrieved 2008-06-15.
- ^ Patterson, David A. (1985). "Reduced instruction set computers". Communications of the ACM 28: 8. doi:10.1145/2465.214917.
- ^ a b Kimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function". Micro, IEEE 8 (2): 22–36. doi:10.1109/40.527. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=33&arnumber=527&count=6&index=1.
- ^ The Experimental IHU-2 Aboard P3D: About ARM Architecture
- ^ Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K (1988). "Realization of Gmicro/200". Micro, IEEE 8 (2): 12–21. doi:10.1109/40.526. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=33&arnumber=526&count=6&index=0.
- ^ Moore CR, Balser DM, Muhich JS, East RE (1992). "IBM Single Chip RISC Processor (RSC)". Proceedings of the 1991 IEEE International Conference on Computer Design on VLSI in Computer & Processors. IEEE Computer Society. pp. 200–4. ISBN 0-8186-3110-4. http://zmoore.net/RSC%20ICCD92.pdf.
- ^ "PA-RISC Processors". http://www.openpa.net/pa-risc_processors.html. Retrieved 2008-05-11.
- ^ http://www.anandtech.com/show/4118/a-closer-look-at-the-sandy-bridge-die
- ^ http://www.avsforum.com/avs-vb/showthread.php?s=75ab046a2a3e7839557c22b89ff1ccd5&p=19470009#post19470009
- sandpile.org for x86 processor information
- Ogdin, Jerry (January 1975). "Microprocessor scorecard". Euromicro Newsletter 1 (2): 43–77. doi:10.1016/0303-1268(75)90008-5.
Categories:- Digital electronics
- Microcomputers
- Microprocessors
-
Wikimedia Foundation. 2010.