Digital signal processing

Digital signal processing

Digital signal processing (DSP) is concerned with the representation of discrete time signals by a sequence of numbers or symbols and the processing of these signals. Digital signal processing and analog signal processing are subfields of signal processing. DSP includes subfields like: audio and speech signal processing, sonar and radar signal processing, sensor array processing, spectral estimation, statistical signal processing, digital image processing, signal processing for communications, control of systems, biomedical signal processing, seismic data processing, etc.

The goal of DSP is usually to measure, filter and/or compress continuous real-world analog signals. The first step is usually to convert the signal from an analog to a digital form, by sampling it using an analog-to-digital converter (ADC), which turns the analog signal into a stream of numbers. However, often, the required output signal is another analog output signal, which requires a digital-to-analog converter (DAC). Even if this process is more complex than analog processing and has a discrete value range, the application of computational power to digital signal processing allows for many advantages over analog processing in many applications, such as error detection and correction in transmission as well as data compression.[1]

DSP algorithms have long been run on standard computers, on specialized processors called digital signal processor on purpose-built hardware such as application-specific integrated circuit (ASICs). Today there are additional technologies used for digital signal processing including more powerful general purpose microprocessors, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial apps such as motor control), and stream processors, among others.[2]

Contents

Signal sampling

With the increasing use of computers the usage of and need for digital signal processing has increased. In order to use an analog signal on a computer it must be digitized with an analog-to-digital converter. Sampling is usually carried out in two stages, discretization and quantization. In the discretization stage, the space of signals is partitioned into equivalence classes and quantization is carried out by replacing the signal with representative signal of the corresponding equivalence class. In the quantization stage the representative signal values are approximated by values from a finite set.

The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency of the signal; but requires an infinite number of samples . In practice, the sampling frequency is often significantly more than twice that required by the signal's limited bandwidth.

A digital-to-analog converter is used to convert the digital signal back to analog. The use of a digital computer is a key ingredient in digital control systems.

DSP domains

In DSP, engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, autocorrelation domain, and wavelet domains. They choose the domain in which to process a signal by making an informed guess (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal. A sequence of samples from a measuring device produces a time or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain information, that is the frequency spectrum. Autocorrelation is defined as the cross-correlation of the signal with itself over varying intervals of time or space.

Time and space domains

The most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Digital filtering generally consists of some linear transformation of a number of surrounding samples around the current sample of the input or output signal. There are various ways to characterize filters; for example:

  • A "linear" filter is a linear transformation of input samples; other filters are "non-linear". Linear filters satisfy the superposition condition, i.e. if an input is a weighted linear combination of different signals, the output is an equally weighted linear combination of the corresponding output signals.
  • A "causal" filter uses only previous samples of the input or output signals; while a "non-causal" filter uses future input samples. A non-causal filter can usually be changed into a causal filter by adding a delay to it.
  • A "time-invariant" filter has constant properties over time; other filters such as adaptive filters change in time.
  • Some filters are "stable", others are "unstable". A stable filter produces an output that converges to a constant value with time, or remains bounded within a finite interval. An unstable filter can produce an output that grows without bounds, with bounded or even zero input.
  • A "finite impulse response" (FIR) filter uses only the input signals, while an "infinite impulse response" filter (IIR) uses both the input signal and previous samples of the output signal. FIR filters are always stable, while IIR filters may be unstable.

Filters can be represented by block diagrams which can then be used to derive a sample processing algorithm to implement the filter using hardware instructions. A filter may also be described as a difference equation, a collection of zeroes and poles or, if it is an FIR filter, an impulse response or step response.

The output of a digital filter to any given input may be calculated by convolving the input signal with the impulse response.

Frequency domain

Signals are converted from time or space domain to the frequency domain usually through the Fourier transform. The Fourier transform converts the signal information to a magnitude and phase component of each frequency. Often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.

The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present in the input signal and which are missing.

In addition to frequency information, phase information is often needed. This can be obtained from the Fourier transform. With some applications, how the phase varies with frequency can be a significant consideration.

Filtering, particularly in non-realtime work can also be achieved by converting to the frequency domain, applying the filter and then converting back to the time domain. This is a fast, O(n log n) operation, and can give essentially any filter shape including excellent approximations to brickwall filters.

There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain through Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes the frequency components with smaller magnitude while retaining the order of magnitudes of frequency components.

Frequency domain analysis is also called spectrum- or spectral analysis.

Z-plane analysis

Whereas analog filters are usually analysed in terms of transfer functions in the s plane using Laplace transforms, digital filters are analysed in the z plane in terms of Z-transforms. A digital filter may be described in the z plane by its characteristic collection of zeroes and poles. The z plane provides a means for mapping digital frequency (samples/second) to real and imaginary z components, were z = ejΩ for continuous periodic signals and Ω = 2πF (F is the digital frequency). This is useful for providing a visualization of the frequency response of a digital system or signal.

Wavelet

An example of the 2D discrete wavelet transform that is used in JPEG2000. The original image is high-pass filtered, yielding the three large images, each describing local changes in brightness (details) in the original image. It is then low-pass filtered and downscaled, yielding an approximation image; this image is high-pass filtered to produce the three smaller detail images, and low-pass filtered to produce the final approximation image in the upper-left.

In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time).

Applications

The main applications of DSP are audio signal processing, audio compression, digital image processing, video compression, speech processing, speech recognition, digital communications, RADAR, SONAR, seismology and biomedicine. Specific examples are speech compression and transmission in digital mobile phones, room correction of sound in hi-fi and sound reinforcement applications, weather forecasting, economic forecasting, seismic data processing, analysis and control of industrial processes, medical imaging such as CAT scans and MRI, MP3 compression, computer graphics, image manipulation, hi-fi loudspeaker crossovers and equalization, and audio effects for use with electric guitar amplifiers.

Implementation

Depending on the requirements of the application, digital signal processing tasks can be implemented on general purpose computers (e.g. super computers, mainframe computers, or personal computers) or with embedded processors that may or may not include specialized microprocessors call digital signal processors.

Often when the processing requirement is not real-time, processing is economically done with an existing general-purpose computer and the signal data (either input or output) exists in data files. This is essentially no different than any other data processing except DSP mathematical techniques (such as the FFT) are made use of and the sampled data is usually assumed to be uniformly sampled in time or space. For example: processing digital photographs with software such as Photoshop.

However, when the application requirement is real-time, DSP is often implemented using specialised microprocessors such as the DSP56000, the TMS320, or the SHARC. These often process data using fixed-point arithmetic, although some versions are available which use floating point arithmetic and are more powerful. For faster applications FPGAs[3] might be used. Beginning in 2007, multicore implementations of DSPs have started to emerge from companies including Freescale and Stream Processors, Inc. For faster applications with vast usage, ASICs might be designed specifically. For slow applications, a traditional slower processor such as a microcontroller may be adequate. Also a growing number of DSP applications are now being implemented on Embedded Systems using powerful PCs with a Multi-core processor.

Techniques

Related fields

References

Further reading

  • Alan V. Oppenheim, Ronald W. Schafer, John R. Buck : Discrete-Time Signal Processing, Prentice Hall, ISBN 0-13-754920-2
  • Boaz Porat: A Course in Digital Signal Processing, Wiley, ISBN 0471149616
  • Richard G. Lyons: Understanding Digital Signal Processing, Prentice Hall, ISBN 0-13-108989-7
  • Jonathan Yaakov Stein, Digital Signal Processing, a Computer Science Perspective, Wiley, ISBN 0-471-29546-9
  • Sen M. Kuo, Woon-Seng Gan: Digital Signal Processors: Architectures, Implementations, and Applications, Prentice Hall, ISBN 0-13-035214-4
  • Bernard Mulgrew, Peter Grant, John Thompson: Digital Signal Processing - Concepts and Applications, Palgrave Macmillan, ISBN 0-333-96356-3
  • Steven W. Smith: Digital Signal Processing - A Practical Guide for Engineers and Scientists, Newnes, ISBN 0-7506-7444-X, ISBN 0-9660176-3-3
  • Paul A. Lynn, Wolfgang Fuerst: Introductory Digital Signal Processing with Computer Applications, John Wiley & Sons, ISBN 0-471-97984-8
  • James D. Broesch: Digital Signal Processing Demystified, Newnes, ISBN 1-878707-16-7
  • John G. Proakis, Dimitris Manolakis: Digital Signal Processing - Principles, Algorithms and Applications, Pearson, ISBN 0-13-394289-9
  • Hari Krishna Garg: Digital Signal Processing Algorithms, CRC Press, ISBN 0-8493-7178-3
  • P. Gaydecki: Foundations Of Digital Signal Processing: Theory, Algorithms And Hardware Design, Institution of Electrical Engineers, ISBN 0-85296-431-5
  • Gibson, John. “Spectral Delay as a Compositional Resource.” eContact! 11.4 — Toronto Electroacoustic Symposium 2009 (TES) / Symposium Électroacoustique 2009 de Toronto (December 2009). Montréal: CEC.
  • Paul M. Embree, Damon Danieli: C++ Algorithms for Digital Signal Processing, Prentice Hall, ISBN 0-13-179144-3
  • Anthony Zaknich: Neural Networks for Intelligent Signal Processing, World Scientific Pub Co Inc, ISBN 981-238-305-0
  • Vijay Madisetti, Douglas B. Williams: The Digital Signal Processing Handbook, CRC Press, ISBN 0-8493-8572-5
  • Stergios Stergiopoulos: Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems, CRC Press, ISBN 0-8493-3691-0
  • Joyce Van De Vegte: Fundamentals of Digital Signal Processing, Prentice Hall, ISBN 0-13-016077-6
  • Ashfaq Khan: Digital Signal Processing Fundamentals, Charles River Media, ISBN 1-58450-281-9
  • Jonathan M. Blackledge, Martin Turner: Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications, Horwood Publishing, ISBN 1-898563-48-9
  • Bimal Krishna, K. Y. Lin, Hari C. Krishna: Computational Number Theory & Digital Signal Processing, CRC Press, ISBN 0-8493-7177-5
  • Doug Smith: Digital Signal Processing Technology: Essentials of the Communications Revolution, American Radio Relay League, ISBN 0-87259-819-5
  • Henrique S. Malvar: Signal Processing with Lapped Transforms, Artech House Publishers, ISBN 0-89006-467-9
  • Charles A. Schuler: Digital Signal Processing: A Hands-On Approach, McGraw-Hill, ISBN 0-07-829744-3
  • James H. McClellan, Ronald W. Schafer, Mark A. Yoder: Signal Processing First, Prentice Hall, ISBN 0-13-090999-8
  • Artur Krukowski, Izzet Kale: DSP System Design: Complexity Reduced Iir Filter Implementation for Practical Applications, Kluwer Academic Publishers, ISBN 1-4020-7558-8
  • Kainam Thomas Wong [1]: Statistical Signal Processing lecture notes [2] at the University of Waterloo, Canada.
  • John G. Proakis: A Self-Study Guide for Digital Signal Processing, Prentice Hall, ISBN 0-13-143239-7

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Digital Signal Processing — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Die digitale Signalverarbeitung ist ein Teilgebiet der… …   Deutsch Wikipedia

  • digital signal processing — skaitmeninis signalų apdorojimas statusas T sritis radioelektronika atitikmenys: angl. digital signal processing vok. Digitalsignalverarbeitung, f rus. цифровая обработка сигналов, f pranc. traitement digital des signaux, m …   Radioelektronikos terminų žodynas

  • Digital Signal Processing — WikiV When applied to video cameras, DSP means that the analog signal from the CCD sensors is converted to a digital signal. It is then processed for signal separation, bandwidth settings and signal adjustments. After processing, the video signal …   Audio and video glossary

  • Multi-rate digital signal processing — Multi rate signal processing studies digital signal processing systems which include sample rate conversion. Multirate signal processing techniques are necessary for systems with different input and output sample rates, but may also be used to… …   Wikipedia

  • Normalized frequency (digital signal processing) — In digital signal processing, the normalized frequency of a periodic signal is its frequency expressed in units of cycles (or radians) per sample, rather than in the usual SI units of hertz (cycles per second). The cycles per sample frequency is… …   Wikipedia

  • Digital image processing — This article is about mathematical processing of digital images. For artistic processing of images, see Image editing. Paranal Observatory landscape after application of the city globe image technique. The Digital image processing is the use of… …   Wikipedia

  • Digital Signal Processing — editing of sounds or image or videos in order to produce different effects, DSP …   English contemporary dictionary

  • Digital Signal Processing —    Abbreviated DSP. An integrated circuit used in highspeed data manipulation. You will find DSP chips integrated into sound cards, modems, and video conferencing hardware for use in communications, image manipulation, and other data acquisition… …   Dictionary of networking

  • Signal processing — is an area of systems engineering, electrical engineering and applied mathematics that deals with operations on or analysis of signals, in either discrete or continuous time. Signals of interest can include sound, images, time varying measurement …   Wikipedia

  • Digital signal processor — A Digital Signal Processor chip found in a guitar effects unit. A digital signal processor (DSP) is a specialized microprocessor with an architecture optimized for the fast operational needs of digital signal processing.[1] …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”