Zero (complex analysis)

Zero (complex analysis)

In complex analysis, a zero of a holomorphic function f is a complex number a such that f(a) = 0.

Contents

Multiplicity of a zero

A complex number a is a simple zero of f, or a zero of multiplicity 1 of f, if f can be written as

f(z)=(z-a)g(z)\,

where g is a holomorphic function g such that g(a) is not zero.

Generally, the multiplicity of the zero of f at a is the positive integer n for which there is a holomorphic function g such that

f(z)=(z-a)^ng(z)\  \mbox{and}\ g(a)\neq 0.\,

The multiplicity of a zero a is also known as the order of vanishing of the function at a.

Existence of zeros

The fundamental theorem of algebra says that every nonconstant polynomial with complex coefficients has at least one zero in the complex plane. This is in contrast to the situation with real zeros: some polynomial functions with real coefficients have no real zeros. An example is f(x) = x2 + 1.

Properties

An important property of the set of zeros of a holomorphic function of one variable (that is not identically zero) is that the zeros are isolated. In other words, for any zero of a holomorphic function there is a small disc around the zero which contains no other zeros. There are also some theorems in complex analysis which show the connections between the zeros of a holomorphic (or meromorphic) function and other properties of the function. In particular Jensen's formula and Weierstrass factorization theorem are results for complex functions which have no counterpart for functions of a real variable.

See also

References

  • Conway, John (1986). Functions of One Complex Variable I. Springer. ISBN 0-387-90328-3. 
  • Conway, John (1995). Functions of One Complex Variable II. Springer. ISBN 0-387-94460-5. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Pole (complex analysis) — The absolute value of the Gamma function. This shows that a function becomes infinite at the poles (left). On the right, the Gamma function does not have poles, it just increases quickly. In the mathematical field of complex analysis, a pole of a …   Wikipedia

  • Complex analysis — Plot of the function f(x)=(x2 1)(x 2 i)2/(x2 + 2 + 2i). The hue represents the function argument, while the brightness represents the magnitude. Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch …   Wikipedia

  • List of complex analysis topics — Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematics that investigates functions of complex numbers. It is useful in many branches of mathematics, including number theory and applied …   Wikipedia

  • Antiderivative (complex analysis) — In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex valued function g is a function whose complex derivative is g. More precisely, given an open set U in the complex plane and a function the antiderivative …   Wikipedia

  • Argument (complex analysis) — Arg (mathematics) redirects here. For argument of a function, see Argument of a function. Figure 1. This Argand diagram represents the complex numbers lying on a plane. For each point on the plane, arg is the function which returns the angle φ.… …   Wikipedia

  • Residue (complex analysis) — In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities. (More generally, residues can be calculated for… …   Wikipedia

  • Open mapping theorem (complex analysis) — In complex analysis, the open mapping theorem states that if U is a connected open subset of the complex plane C and f : U → C is a non constant holomorphic function, then f is an open map (i.e. it sends open subsets of U to open subsets of… …   Wikipedia

  • Liouville's theorem (complex analysis) — In complex analysis, Liouville s theorem, named after Joseph Liouville, states that every bounded entire function must be constant. That is, every holomorphic function f for which there exists a positive number M such that | f ( z )| ≤ M for all… …   Wikipedia

  • Zero (disambiguation) — Zero is the name for both the digit 0 and the number 0.Zero may also refer to:Mathematics*Zero (complex analysis), in mathematics, a root of a holomorphic function *Zero element, in mathematics, a generalization of the number zero to other… …   Wikipedia

  • analysis — /euh nal euh sis/, n., pl. analyses / seez /. 1. the separating of any material or abstract entity into its constituent elements (opposed to synthesis). 2. this process as a method of studying the nature of something or of determining its… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”