# Pole (complex analysis)

Pole (complex analysis)  The absolute value of the Gamma function. This shows that a function becomes infinite at the poles (left). On the right, the Gamma function does not have poles, it just increases quickly.

In the mathematical field of complex analysis, a pole of a meromorphic function is a certain type of singularity that behaves like the singularity of $\frac{1}{z^n}$ at z = 0. This means that, in particular, a pole of the function f(z) is a point a such that f(z) approaches infinity as z approaches a.

## Definition

Formally, suppose U is an open subset of the complex plane C, a is an element of U and f : U \ {a} → C is a function which is holomorphic over its domain. If there exists a holomorphic function g : UC and a positive integer n, such that for all z in U \ {a} $f(z) = \frac{g(z)}{(z-a)^n}$

holds, then a is called a pole of f. The smallest such n is called the order of the pole. A pole of order 1 is called a simple pole.

A few authors allow the order of a pole to be zero, in which case a pole of order zero is either a regular point or a removable singularity. However, it is more usual to require the order of a pole to be positive.

From above several equivalent characterizations can be deduced:

If n is the order of pole a, then necessarily g(a) ≠ 0 for the function g in the above expression. So we can put $f(z) = \frac{1}{h(z)}$

for some h that is holomorphic in an open neighborhood of a and has a zero of order n at a. So informally one might say that poles occur as reciprocals of zeros of holomorphic functions.

Also, by the holomorphy of g, f can be expressed as: $f(z) = \frac{a_{-n}}{ (z - a)^n } + \cdots + \frac{a_{-1}}{ (z - a) } + \sum_{k\, \geq \,0} a_k (z - a)^k.$

This is a Laurent series with finite principal part. The holomorphic function $\sum_{k\,\ge\,0} a_k(z\, - \,a)^k$ (on U) is called the regular part of f. So the point a is a pole of order n of f if and only if all the terms in the Laurent series expansion of f around a below degree −n vanish and the term in degree −n is not zero.

## Pole at infinity

It can be defined for a complex function the notion of having a pole at the point at infinity. In this case U has to be a neighborhood of infinity. For example, the exterior of any closed ball. Now, for using the previous definition a meaning for g being holomorphic at ∞ should be given and also for the notion of "having" a zero at infinity as $z\, - \,a$ does at the finite point a. Instead a definition can be given starting from the definition at a finite point by "bringing" the point at infinity to a finite point. The map $z\, \mapsto \,\frac{1}{z}$ does that. Then, by definition, a function, f, holomorphic in a neighborhood of infinity has a pole at infinity if the function $f(\frac{1}{z})$ (which will be holomorphic in a neighborhood of $z\,=\,0$), has a pole at $z\,=\,0$, the order of which will be taken as the order of the pole at infinity.

## Pole of a function on a complex manifold

In general, having a function $f:\; M\, \rightarrow \,\mathbb{C}$ that is holomorphic in a neighborhood, $U$, of the point $a$, in the complex manifold M, it is said that f has a pole at a of order n if, having a chart $\phi:\; U\, \rightarrow \,\mathbb{C}$, the function $f\, \circ \,\phi^{-1}:\; \mathbb{C}\, \rightarrow \,\mathbb{C}$ has a pole of order n at $\phi(a)$ (which can be taken as being zero if a convenient choice of the chart is made). ] The pole at infinity is the simplest nontrivial example of this definition in which M is taken to be the Riemann sphere and the chart is taken to be $\phi(z)\, = \,\frac{1}{z}$.

## Examples

• The function $f(z) = \frac{3}{z}$
has a pole of order 1 or simple pole at $z\, = \,0$.
• The function $f(z) = \frac{z+2}{(z-5)^2(z+7)^3}$
has a pole of order 2 at $z\, = \,5$ and a pole of order 3 at $z\, = \,-7$.
• The function $f(z) = \frac{z-4}{e^z-1}$
has poles of order 1 at $z\, = \,2\pi ni\text{ for } n\, = \,\dots,\, -1,\, 0,\, 1,\, \dots.$ To see that, write $e^z$ in Taylor series around the origin.
• The function
f(z) = z
has a single pole at infinity of order 1.

## Terminology and generalisations

If the first derivative of a function f has a simple pole at a, then a is a branch point of f. (The converse need not be true).

A non-removable singularity that is not a pole or a branch point is called an essential singularity.

A complex function which is holomorphic except for some isolated singularities and whose only singularities are poles is called meromorphic.

## See also

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Complex analysis — Plot of the function f(x)=(x2 1)(x 2 i)2/(x2 + 2 + 2i). The hue represents the function argument, while the brightness represents the magnitude. Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch …   Wikipedia

• Zero (complex analysis) — In complex analysis, a zero of a holomorphic function f is a complex number a such that f(a) = 0. Contents 1 Multiplicity of a zero 2 Existence of zeros 3 Properties …   Wikipedia

• Residue (complex analysis) — In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities. (More generally, residues can be calculated for… …   Wikipedia

• List of complex analysis topics — Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematics that investigates functions of complex numbers. It is useful in many branches of mathematics, including number theory and applied …   Wikipedia

• Partial fractions in complex analysis — In complex analysis, a partial fraction expansion is a way of writing a meromorphic function f(z) as an infinite sum of rational functions and polynomials. When f(z) is a rational function, this reduces to the usual method of partial… …   Wikipedia

• Liouville's theorem (complex analysis) — In complex analysis, Liouville s theorem, named after Joseph Liouville, states that every bounded entire function must be constant. That is, every holomorphic function f for which there exists a positive number M such that | f ( z )| ≤ M for all… …   Wikipedia

• Pole — may refer to:Cylindrical object*A solid cylindrical object with length greater than its diameter e.g: **Barber s pole, advertising a barber shop **Danish pole, a circus prop **Firemen s pole, a wooden pole or a metal tube or pipe installed… …   Wikipedia

• Pole (mathematics) — In mathematics, a pole may refer to: * pole (complex analysis), a singularity of a meromorphic function * pole (geometry), the dual concept to a polar line …   Wikipedia

• Complex plane — Geometric representation of z and its conjugate in the complex plane. The distance along the light blue line from the origin to the point z is the modulus or absolute value of z. The angle φ is the argument of z. In mathematics …   Wikipedia

• analysis — /euh nal euh sis/, n., pl. analyses / seez /. 1. the separating of any material or abstract entity into its constituent elements (opposed to synthesis). 2. this process as a method of studying the nature of something or of determining its… …   Universalium

### Share the article and excerpts

##### Direct link
Do a right-click on the link above
and select “Copy Link”