Digital control

Digital control

Digital control is a branch of control theory that uses digital computers to act as system controllers. Depending on the requirements, a digital control system can take the form of a microcontroller to an ASIC to a standard desktop computer. Since a digital computer is a discrete system, the Laplace transform is replaced with the Z-transform. Also since a digital computer has finite precision (See quantization), extra care is needed to ensure the error in coefficients, A/D conversion, D/A conversion, etc. are not producing undesired or unplanned effects.

The application of digital control can readily be understood in the use of feedback. Since the creation of the first digital computer in the early 1940s the price of digital computers has dropped considerably, which has made them key pieces to control systems for several reasons:

  • Inexpensive: under $5 for many microcontrollers
  • Flexibile: easy to configure and reconfigure through software
  • Scalable: programs can scale to the limits of the memory or storage space without extra cost
  • Adaptable: parameters of the program can change with time (See adaptive control)
  • Static operation: digital computers are much less prone to environmental conditions than capacitors, inductors, etc.


Digital Controller Implementation

A digital controller is usually cascaded with the plant in a feedback system. The rest of the system can either be digital or analog.

Typically, a digital controller requires:

  • A/D conversion to convert analog inputs to machine readable (digital) format
  • D/A conversion to convert digital outputs to a form that can be input to a plant (analog)
  • A program that relates the outputs to the inputs

Output Program

  • Outputs from the digital controller are functions of current and past input samples, as well as past output samples - this can be implemented by storing relevant values of input and output in registers. The output can then be formed by a weighted sum of these stored values.

The programs can take numerous forms and perform many functions


Although a controller may be stable when implemented as an analog controller, it could be unstable when implemented as a digital controller due to a large sampling interval. During sampling the aliasing modifies the cutoff parameters. Thus the sample rate characterizes the transient response and stability of the compensated system, and must update the values at the controller input often enough so as to not cause instability.

When substituting the frequency into the z operator, regular stability criteria still apply to discrete control systems. Nyquist criteria apply to z-domain transfer functions as well as being general for complex valued functions. Bode stability criteria apply similarly. Jury criterion determines the discrete system stability about its characteristic polynomial.

Design of digital controller in s-domain

The digital controller can also be designed in the s-domain (continuous). The Tustin transformation can transform the continuous compensator to the respective digital compensator. The digital compensator will achieve an output which approaches the output of its respective analog controller as the sampling interval is decreased.

 s = \frac{2(z-1)}{T(z+1)}

Tustin transformation deduction

Tustin is the Padé(1,1) approximation of the exponential function  \begin{align} z &= e^{sT} \end{align}  :

z &= e^{sT}   \\
  &= \frac{e^{sT/2}}{e^{-sT/2}} \\
  &\approx \frac{1 + s T / 2}{1 - s T / 2}

And its inverse

s &= \frac{1}{T} \ln(z)  \\
  &= \frac{2}{T} \left[\frac{z-1}{z+1} + \frac{1}{3} \left( \frac{z-1}{z+1} \right)^3  + \frac{1}{5} \left( \frac{z-1}{z+1} \right)^5  + \frac{1}{7} \left( \frac{z-1}{z+1} \right)^7 + \cdots \right] \\
  &\approx  \frac{2}{T} \frac{z - 1}{z + 1} \\
  &=  \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}

We must never forget that the digital control theory is the technique to design strategies in discrete time, (and/or) quantized amplitude (and/or) in (binary) coded form to be implemented in computer systems (microcontrollers, microprocessors) that will control the analog (continuous in time and amplitude) dynamics of analog systems. From this consideration many errors from classical digital control were identified and solved and new methods were proposed:

  • Marcelo Tredinnick and Marcelo Souza and their new type of analog-digital mapping


See also


  • FRANKLIN, G.F.; POWELL, J.D. Digital control of dynamical systems. USA, California: Addison-Wesley. 1981. ISBN 0201820544
  • KATZ, P. Digital control using microprocessors. Englewood Cliffs: Prentice-Hall, 293p. 1981.
  • OGATA, K. Discrete-time control systems. Englewood Cliffs: Prentice-Hall,984p. 1987.
  • PHILLIPS, C.L.; NAGLE, H. T. Digital control system analysis and design. Englewood Cliffs, New Jersey: Prentice Hall International. 1995.
  • M. Sami Fadali, Antonio Visioli, (2009) "Digital Control Engineering", Academic Press, ISBN 978-012-374498-2.
  • JURY, E.I. Sampled-data control systems. New-York: John Wiley. 1958.

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Digital Control — Digital Control, engl. für digitale Steuerung/Regelung, bezeichnet in der Elektrotechnik die Verwendung von digitalen Halbleiterbausteinen, wie Mikrocontroller, oder Logikgatter zum Steuern und Regeln von Prozessen, Anlagen und Schaltungen. Die… …   Deutsch Wikipedia

  • digital control — skaitmeninis valdymas statusas T sritis automatika atitikmenys: angl. digital control; numeric control vok. Digitalsteuerung, f; numerische Steuerung, f rus. цифровое управление, n pranc. commande digitale, f; commande numérique, f …   Automatikos terminų žodynas

  • Digital Control Bus — (parfois Digital Connection Bus[1] ou Digital Communication Bus[2]) est un type d interface utilisé sur certains instruments de musique électronique. C est une interface propriétaire développée par la société Roland Corporation en 1981[3]. Elle… …   Wikipédia en Français

  • Digital Control Bus — DCB (Digital Control Bus, Digital Connection Bus[1] or Digital Communication Bus[2][3] in some sources) was a proprietary data interchange interface by Roland Corporation, developed in 1981[3] and introduced in 1982 in their Roland Juno 60 and… …   Wikipedia

  • digital control system — skaitmeninio valdymo sistema statusas T sritis automatika atitikmenys: angl. digital control system vok. Digitalsteuerungssystem, n rus. система с цифровым управлением, f pranc. système de commande numérique, m …   Automatikos terminų žodynas

  • Direct digital control — (DDC) is the automated control of a condition or process by a digital device (computer).[1][2] A very early example of a DDC system meeting the above requirements was completed by the Australian business Midac in 1981 1982 using R Tec Australian… …   Wikipedia

  • Direct Digital Control — (DDC) refers to the ability to control HVAC (Heating, Ventilating, and Air Conditioning) devices via microprocessors containing a software performing the control logic. DDC receive analog and digital inputs from the sensors and devices installed… …   Wikipedia

  • Direct Digital Control (Regelungstechnisches Verfahren) — Direct Digital Control (abgekürzt DDC) ist ein Verfahren, Regelkreise mit darin teilweise enthaltenen Übertragungsgliedern von digitalen Prozessorsystemen (inklusive AD und DA Wandler modellierende Glieder) zu konstruieren und ihre Eigenschaften… …   Deutsch Wikipedia

  • Direct Digital Control — DDC GA Komponente Draufsicht Eine Komponente der Direct Digital Control Gebäudeautomation, kurz DDC GA, ist eine einem Computer ähnliche elektronische Baugruppe, die für Steuerungs und Regelungsaufgaben in der Gebäudeautomatisierung eingesetzt… …   Deutsch Wikipedia

  • direct digital control — tiesioginis skaitmeninis valdymas statusas T sritis automatika atitikmenys: angl. direct digital control vok. direkte digitale Regelung, f rus. прямое цифровое управление, n pranc. commande numérique directe, f …   Automatikos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”