- Seismology
Seismology (from Greek _gr. σεισμός, "seismos", "earthquake"; and _gr. -λογία, "-logia") is the scientific study of
earthquake s and the propagation of elastic waves through theEarth . The field also includes studies of earthquake effects, such astsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic, atmospheric, and artificial processes (such as explosions). A related field that usesgeology to infer information regarding past earthquakes ispaleoseismology . A recording of earth motion as a function of time is called aseismogram .eismic waves
Earthquakes, and other sources, produce different types of seismic waves which travel through rock, and provide an effective way to image both sources and structures deep within the Earth. There are three basic types of seismic waves in solids:
P-waves ,S-waves (both body waves) and interface waves. The two basic kinds of surface waves (Rayleigh and Love) which travel along a solid-air interface, can be fundamentally explained in terms of interacting P- and/or S-waves.
[Propagation ofseismic wave in the ground and the effect of presence ofland mine .]Pressure wave s (P-waves), arelongitudinal wave s that travel at maximum velocity within solids and are therefore the first waves to appear on a seismogram.S-waves, also called
Shear wave s or secondary waves, aretransverse wave s that travel more slowly than P-waves and thus appear later than P-waves on a seismogram. Particle motion is perpendicular to the direction of wave propagation. Shear waves do not exist in fluids such as air or water.Surface waves travel more slowly than P-waves and S-waves, but because they are guided by the surface of the Earth (and their energy is thus trapped near the Earth's surface) they can be much larger in amplitude than body waves, and can be the largest signals seen in earthquake seismograms. They are particularly strongly excited when the seismic source is close to the surface of the Earth, such as the case of a shallow earthquake.
For large enough earthquakes, one can observe the
normal modes of the Earth. These modes are excited as discrete frequencies and can be observed for days after the generating event. The first observations were made in the 1960s as the advent of higher fidelity instruments coincided with two of the largest earthquakes of the 20th century - the 1960 Great Chilean earthquake and the 1964 Great Alaskan earthquake. Since then, the normal modes of the Earth have given us some of the strongest constraints on the deep structure of the Earth.One of the earliest important discoveries (suggested by
Richard Dixon Oldham in 1906 and definitively shown byHarold Jeffreys in 1926) was that theouter core of the Earth isliquid .Pressure wave s (P-waves) pass through the core. Transverse orshear wave s (S-waves) that shake side-to-side require rigid material so they do not pass through the outer core. Thus, the liquid core causes a "shadow" on the side of the planet opposite of the earthquake where no direct S-waves are observed. The reduction in P-wave velocity of the outer core also causes a substantial delay for P waves penetrating the core from the (seismically faster velocity) mantle.Seismic waves produced by
explosion s or vibrating controlled sources are the primary method of underground exploration. Controlled source seismology has been used to mapsalt dome s, faults, anticlines and other geologic traps inpetroleum -bearing rocks,geological fault s, rock types, and long-buried giantmeteor craters. For example, the Chicxulub impactor, which is believed to have killed thedinosaur s, was localized to Central America by analyzing ejecta in the cretaceous boundary, and then physically proven to exist using seismic maps fromoil exploration .Using
seismic tomography with earthquake waves, the interior of the Earth has been completely mapped to a resolution of several hundred kilometers. This process has enabled scientists to identify convection cells,mantle plume s and other large-scale features of the inner Earth.Seismograph s are instruments that sense and record the motion of the Earth. Networks of seismographs today continuously monitor the seismic environment of the planet, allowing for the monitoring and analysis of global earthquakes and tsunami warnings, as well as recording a variety of seismic signals arising from non-earthquake sources ranging from explosions (nuclear and chemical), to pressure variations on the ocean floor induced by ocean waves (the global microseism), to cryospheric events associated with large icebergs and glaciers. Above-ocean meteor strikes as large as ten kilotons of TNT, (equivalent to about 4.2 × 1013 J of effective explosive force) have been recorded by seismographs. A major motivation for the global instrumentation of the Earth with seismographs has been for the monitoring ofnuclear testing .One of the first attempts at the scientific study of earthquakes followed the
1755 Lisbon earthquake . Other especially notable earthquakes that spurred major developments in the science of seismology include the1906 San Francisco earthquake , the1964 Alaska earthquake and the 2004Sumatra-Andaman earthquake . An extensive list of famous earthquakes can be found on theearthquake page.Earthquake prediction
Most seismologists do not believe that a system to provide timely warnings for individual earthquakes has yet been developed, and many believe that such a system would be unlikely to give significant warning of impending seismic events. More general forecasts, however, are routinely used to establish seismic hazard. Such forecasts estimate the probability of an earthquake of a particular size affecting a particular location within a particular time span.
Various attempts have been made by seismologists and others to create effective systems for precise earthquake predictions, including the
VAN method . Such methods have yet to be generally accepted in the seismology community.Notable seismologists
* Aki, Keiiti
* Beroza, Gregory
* Bolt, Bruce
* Brune, Jim
* Dziewonski, Adam Marian
* Galitzine, Boris Borisovich
* Gamburtsev, Grigory A.
* Gutenberg, Beno
* Hutton, Kate
* Jordan, Thomas
* Jeffreys, Harold
* Kanamori, Hiroo
* Keilis-Borok, Vladimir
* Knopoff, Leon
* Lehmann, Inge
* Mercalli, Giuseppe
* Hanks, Thomas C.
* Milne, John
* Mohorovičić, Andrija
* Oldham, Richard Dixon
* Sebastião de Melo, Marquis of Pombal
* Press, Frank
* Richter, Charles Francis
*Zhang Heng ee also
*Catastrophe modeling
*Cryoseism
*Earthquake engineering
*Engineering geology
*Geophysics
*GNS Science (formerly the Institute of Geological and Nuclear Sciences) (in New Zealand)
*Helioseismology
*The IRIS Consortium
*Plate tectonics
*Reflection seismology
*Seismic loading
*Seismic performance analysis
*Seismometer
*Seismic source
*Volcanology References
Wikimedia Foundation. 2010.